2020-11-21 10:52:58 +03:00

163 lines
5.8 KiB
TypeScript

/* eslint-disable @typescript-eslint/no-explicit-any */
/* eslint-disable @typescript-eslint/no-var-requires */
import * as cv from 'opencv4nodejs'
import { HistAxes } from 'opencv4nodejs';
import db_ops from './db_ops';
import sharp from 'sharp'
const detector=new cv.SIFTDetector({nFeatures:500})
const matchFunc = cv.matchKnnBruteForceAsync
const imghash = require('imghash');
const BIN_SIZE = 16
const histAxes: HistAxes[] = [
new HistAxes({
channel: 0,
bins: BIN_SIZE,
ranges: [0, 255]
}),
new HistAxes({
channel: 1,
bins: BIN_SIZE,
ranges: [0, 255]
}),
new HistAxes({
channel: 2,
bins: BIN_SIZE,
ranges: [0, 255]
}),
]
function normalize(descriptor:any){
for(let i=0;i<descriptor.length;i++){
const arr=descriptor[i]
const arr2=[]
let sum=10**(-7)
for (const x of arr){
sum+=x
}
for (const x of arr){
arr2.push(Math.sqrt((x/sum)))
}
descriptor[i]=arr2
}
return descriptor
}
async function calculate_color_hist_and_similarities(new_image_id: number, image: Buffer) {
const img_mat = await cv.imdecodeAsync(image)
let rgb_hist = await cv.calcHistAsync(img_mat, histAxes)
rgb_hist = rgb_hist.convertTo(cv.CV_32F);
rgb_hist = rgb_hist.flattenFloat(BIN_SIZE * BIN_SIZE * BIN_SIZE, 1)
rgb_hist = rgb_hist.div(img_mat.sizes[0] * img_mat.sizes[1])
const arr = rgb_hist.getDataAsArray()
db_ops.image_search.add_color_hist_by_id(new_image_id, arr)
const similarities = []
const ids = (await db_ops.image_search.get_image_ids_from_color_similarities()).map((el) => el.id)
for (const _id of ids) {
const _image = (await db_ops.image_search.get_color_hist_by_id(_id))[0]
const color_hist_mat = new cv.Mat(_image.color_hist, cv.CV_32F);
const similarity = await rgb_hist.compareHistAsync(color_hist_mat, cv.HISTCMP_INTERSECT)
color_hist_mat.release()
similarities.push({ id: _id, similarity: similarity })
db_ops.image_search.add_color_similarity_to_other_image(_id, { id: new_image_id, similarity: similarity })
}
await db_ops.image_search.add_color_similarities_by_id(new_image_id, similarities)
}
async function calculate_sift_features(image_id:number,image: Buffer) {
const metadata = await sharp(image).metadata()
if(metadata && metadata.height && metadata.width){
if(metadata.height*metadata.width>2000*2000){
const k=Math.sqrt(metadata.height*metadata.width/(2000*2000))
image = await sharp(image).resize({height:Math.round(metadata.height/k),width:Math.round(metadata.width/k)}).toBuffer()
}
}
const img=await cv.imdecodeAsync(image)
const keyPoints = await detector.detectAsync(img);
const descriptors = await detector.computeAsync(img, keyPoints);
const desc1_normalized=normalize(descriptors.getDataAsArray())
descriptors.release()
img.release()
await db_ops.image_search.add_sift_features_by_id(image_id,desc1_normalized)
}
async function get_similar_images_by_sift(image: Buffer) {
const metadata = await sharp(image).metadata()
if(metadata && metadata.height && metadata.width){
if(metadata.height*metadata.width>2000*2000){
const k=Math.sqrt(metadata.height*metadata.width/(2000*2000))
image = await sharp(image).resize({height:Math.round(metadata.height/k),width:Math.round(metadata.width/k)}).toBuffer()
}
}
const img_mat = await cv.imdecodeAsync(image)
const keyPoints = await detector.detectAsync(img_mat);
const query_image_desc = await detector.computeAsync(img_mat, keyPoints)
const query_image_desc_normalized=normalize(query_image_desc.getDataAsArray())
const query_image_desc_normalized_mat=new cv.Mat(query_image_desc_normalized, cv.CV_32FC1)
const number_of_images = await db_ops.image_search.get_number_of_images_sift_reverse_search()
const batch = 500;
let similar_images = []
for (let i = 0; i < number_of_images; i += batch) {
const descriptors = await db_ops.image_search.get_sift_features_batch(i, batch)
for (const img of descriptors) {
const descriptors2 = new cv.Mat(img.sift_features, cv.CV_32FC1)
const matches = await matchFunc(query_image_desc_normalized_mat, descriptors2,2);
descriptors2.release()
if(matches.length===0){
continue
}
const good_matches=[]
let good_matches_sum=0
for(const [desc1,desc2] of matches){
if(desc1.distance < 0.75*desc2.distance){
good_matches.push(desc1)
good_matches_sum+=desc1.distance
}
}
if(good_matches.length<5){
continue
}
const bestN = 5;
let topBestNSum=0
const bestMatches = good_matches.sort(
(match1, match2) => match1.distance - match2.distance
).slice(0, bestN);
for(const x of bestMatches){
topBestNSum+=x.distance
}
similar_images.push({ id: img.id, avg_distance: -((bestN/topBestNSum)*(good_matches.length/(good_matches_sum)))-(good_matches.length)})
}
}
similar_images.sort((a, b) => a.avg_distance - b.avg_distance)
similar_images=similar_images.slice(0,30)
console.log(similar_images)
const ids = similar_images.map((el) => el.id)
return ids
}
function hamming_distance(str1: string, str2: string) {
let distance = 0;
for (let i = 0; i < str1.length; i += 1) {
if (str1[i] !== str2[i]) {
distance += 1;
}
}
return distance;
}
async function get_similar_images_by_phash(image: Buffer) {
const phash = await imghash.hash(image, 16)
let images = await db_ops.image_ops.get_ids_and_phashes()
for (let i = 0; i < images.length; i++) {
images[i].dist = hamming_distance(phash, images[i].phash)
if (images[i].dist === 0) {
return [images[i].id]
}
}
images.sort((a, b) => a.dist - b.dist)
images=images.slice(0,30)
const ids = images.map((el) => el.id)
return ids
}
export default { calculate_color_hist_and_similarities, get_similar_images_by_sift, get_similar_images_by_phash, calculate_sift_features }