mirror of
https://github.com/qwertyforce/scenery.git
synced 2025-05-31 11:42:35 +00:00
217 lines
6.5 KiB
Python
217 lines
6.5 KiB
Python
import uvicorn
|
|
if __name__ == '__main__':
|
|
uvicorn.run('rgb_histogram_web:app', host='127.0.0.1', port=33335, log_level="info")
|
|
|
|
from pydantic import BaseModel
|
|
from fastapi import FastAPI, File,Body,Form, HTTPException
|
|
from os import listdir
|
|
import numpy as np
|
|
from PIL import Image
|
|
from sklearn.neighbors import NearestNeighbors
|
|
import cv2
|
|
IMAGE_PATH="./../public/images"
|
|
|
|
import sqlite3
|
|
import io
|
|
conn = sqlite3.connect('rgb_histograms.db')
|
|
|
|
import nmslib
|
|
# dim=4096
|
|
index = nmslib.init(method='hnsw', space="l1", data_type=nmslib.DataType.DENSE_VECTOR)
|
|
index_time_params = {'M': 32,'efConstruction': 200}
|
|
|
|
IN_MEMORY_HISTS={}
|
|
|
|
def init_index():
|
|
image_data=get_all_data()
|
|
features=[]
|
|
ids=[]
|
|
for image in image_data:
|
|
ids.append(image['image_id'])
|
|
features.append(image['features'])
|
|
# IN_MEMORY_HISTS[image['image_id']]=image['features']
|
|
ids=np.array(ids)
|
|
features=np.array(features).squeeze()
|
|
index.addDataPointBatch(features,ids)
|
|
index.createIndex(index_time_params)
|
|
print("Index is ready")
|
|
|
|
def read_img_file(image_data):
|
|
img = Image.open(io.BytesIO(image_data))
|
|
return img
|
|
|
|
def get_rgb_histogram_by_id(id):
|
|
cursor = conn.cursor()
|
|
query = '''
|
|
SELECT rgb_histogram
|
|
FROM rgb_hists
|
|
WHERE id = (?)
|
|
'''
|
|
cursor.execute(query,(id,))
|
|
all_rows = cursor.fetchone()
|
|
return all_rows[0]
|
|
|
|
def get_features(image_buffer):
|
|
query_image=np.array(read_img_file(image_buffer).convert('RGB'))
|
|
query_hist_combined=cv2.calcHist([query_image],[0,1,2],None,[16,16,16],[0,256,0,256,0,256])
|
|
query_hist_combined = query_hist_combined.flatten()
|
|
query_hist_combined=cv2.divide(query_hist_combined,query_image.shape[0]*query_image.shape[1])
|
|
return query_hist_combined
|
|
|
|
def create_table():
|
|
cursor = conn.cursor()
|
|
query = '''
|
|
CREATE TABLE IF NOT EXISTS rgb_hists(
|
|
id INTEGER NOT NULL UNIQUE PRIMARY KEY,
|
|
rgb_histogram BLOB NOT NULL
|
|
)
|
|
'''
|
|
cursor.execute(query)
|
|
conn.commit()
|
|
|
|
def check_if_exists_by_id(id):
|
|
cursor = conn.cursor()
|
|
query = '''SELECT EXISTS(SELECT 1 FROM rgb_hists WHERE id=(?))'''
|
|
cursor.execute(query,(id,))
|
|
all_rows = cursor.fetchone()
|
|
return all_rows[0] == 1
|
|
|
|
def delete_descriptor_by_id(id):
|
|
cursor = conn.cursor()
|
|
query = '''DELETE FROM rgb_hists WHERE id=(?)'''
|
|
cursor.execute(query,(id,))
|
|
conn.commit()
|
|
|
|
def get_all_ids():
|
|
cursor = conn.cursor()
|
|
query = '''SELECT id FROM rgb_hists'''
|
|
cursor.execute(query)
|
|
all_rows = cursor.fetchall()
|
|
return list(map(lambda el:el[0],all_rows))
|
|
|
|
def convert_array(text):
|
|
out = io.BytesIO(text)
|
|
out.seek(0)
|
|
return np.load(out)
|
|
|
|
def get_all_data():
|
|
cursor = conn.cursor()
|
|
query = '''
|
|
SELECT id, rgb_histogram
|
|
FROM rgb_hists
|
|
'''
|
|
cursor.execute(query)
|
|
all_rows = cursor.fetchall()
|
|
return list(map(lambda el:{"image_id":el[0],"features":convert_array(el[1])},all_rows))
|
|
|
|
def adapt_array(arr):
|
|
out = io.BytesIO()
|
|
np.save(out, arr)
|
|
out.seek(0)
|
|
return sqlite3.Binary(out.read())
|
|
|
|
def add_descriptor(id,rgb_histogram):
|
|
cursor = conn.cursor()
|
|
query = '''INSERT INTO rgb_hists(id, rgb_histogram) VALUES (?,?)'''
|
|
cursor.execute(query,(id,rgb_histogram))
|
|
conn.commit()
|
|
|
|
def sync_db():
|
|
ids_in_db=set(get_all_ids())
|
|
file_names=listdir(IMAGE_PATH)
|
|
for file_name in file_names:
|
|
file_id=int(file_name[:file_name.index('.')])
|
|
if file_id in ids_in_db:
|
|
ids_in_db.remove(file_id)
|
|
for id in ids_in_db:
|
|
delete_descriptor_by_id(id) #Fix this
|
|
print(f"deleting {id}")
|
|
print("db synced")
|
|
|
|
app = FastAPI()
|
|
@app.get("/")
|
|
async def read_root():
|
|
return {"Hello": "World"}
|
|
|
|
@app.post("/calculate_HIST_features")
|
|
async def calculate_HIST_features_handler(image: bytes = File(...),image_id: str = Form(...)):
|
|
features=get_features(image)
|
|
add_descriptor(int(image_id),adapt_array(features))
|
|
# IN_MEMORY_HISTS[int(image_id)]=features
|
|
index.addDataPoint(int(image_id),features)
|
|
index.createIndex(index_time_params)
|
|
return {"status":"200"}
|
|
|
|
class Item_image_id(BaseModel):
|
|
image_id: int
|
|
|
|
from timeit import default_timer as timer
|
|
@app.post("/get_similar_images_by_id")
|
|
async def get_similar_images_by_id_handler(item: Item_image_id):
|
|
try:
|
|
start = timer()
|
|
target_features = convert_array(get_rgb_histogram_by_id(item.image_id))
|
|
labels, _ = index.knnQuery(target_features, k=20)
|
|
end = timer()
|
|
print((end - start)*1000)
|
|
return labels.tolist()
|
|
except RuntimeError:
|
|
raise HTTPException(
|
|
status_code=500, detail="Image with this id is not found")
|
|
|
|
import heapq
|
|
# def find_bruteforce(target_image_id,k):
|
|
# query_hist=IN_MEMORY_HISTS[target_image_id]
|
|
# # print(query_hist[0])
|
|
# # print(query_hist[1])
|
|
# # heap=[]
|
|
# # for key in IN_MEMORY_HISTS:
|
|
# # # similarity=np.sum(np.minimum(query_hist,IN_MEMORY_HISTS[key]))
|
|
# # similarity=cv2.compareHist(query_hist,IN_MEMORY_HISTS[key],cv2.HISTCMP_INTERSECT)
|
|
# # if len(heap) < k or similarity > heap[0][0]:
|
|
# # # If the heap is full, remove the smallest element on the heap.
|
|
# # if len(heap) == k: heapq.heappop(heap)
|
|
# # # add the current element as the new smallest.
|
|
# # heapq.heappush( heap, (similarity,key) )
|
|
# # heap=[heapq.heappop(heap) for i in range(len(heap))]
|
|
# # heap.reverse()
|
|
# # print(heap)
|
|
# # found_images_filenames=list(map(lambda el: el[1],heap))
|
|
# found_images=[]
|
|
# for key in IN_MEMORY_HISTS:
|
|
# # similarity=cv2.compareHist(query_hist,IN_MEMORY_HISTS[key],cv2.HISTCMP_INTERSECT)
|
|
# similarity=np.abs(query_hist-IN_MEMORY_HISTS[key]).sum()
|
|
# found_images.append({"similarity":similarity,"file_name":key})
|
|
# found_images.sort(key=lambda item: item["similarity"],reverse=False)
|
|
|
|
# found_images=found_images[:20]
|
|
# found_images_filenames=list(map(lambda el: el["file_name"],found_images))
|
|
# return found_images_filenames
|
|
|
|
|
|
|
|
# @app.post("/get_similar_images_by_id")
|
|
# async def get_similar_images_by_id_handler(item: Item_image_id):
|
|
# start = timer()
|
|
# similar=find_bruteforce(item.image_id,10)
|
|
# end = timer()
|
|
# print((end - start)*1000) # Time in seconds, e.g. 5.38091952400282
|
|
# return similar
|
|
|
|
@app.post("/delete_HIST_features")
|
|
async def delete_hist_features_handler(item:Item_image_id):
|
|
delete_descriptor_by_id(item.image_id)
|
|
init_index()
|
|
return {"status":"200"}
|
|
|
|
print(__name__)
|
|
|
|
if __name__ == 'rgb_histogram_web':
|
|
create_table()
|
|
sync_db()
|
|
init_index()
|
|
|
|
|
|
|
|
|