pgx/values.go

1662 lines
41 KiB
Go

package pgx
import (
"bytes"
"fmt"
"math"
"net"
"strconv"
"strings"
"time"
)
// PostgreSQL oids for common types
const (
BoolOid = 16
ByteaOid = 17
Int8Oid = 20
Int2Oid = 21
Int4Oid = 23
TextOid = 25
OidOid = 26
CidrOid = 650
Float4Oid = 700
Float8Oid = 701
InetOid = 869
BoolArrayOid = 1000
Int2ArrayOid = 1005
Int4ArrayOid = 1007
TextArrayOid = 1009
VarcharArrayOid = 1015
Int8ArrayOid = 1016
Float4ArrayOid = 1021
Float8ArrayOid = 1022
VarcharOid = 1043
DateOid = 1082
TimestampOid = 1114
TimestampArrayOid = 1115
TimestampTzOid = 1184
TimestampTzArrayOid = 1185
)
// PostgreSQL format codes
const (
TextFormatCode = 0
BinaryFormatCode = 1
)
// DefaultTypeFormats maps type names to their default requested format (text
// or binary). In theory the Scanner interface should be the one to determine
// the format of the returned values. However, the query has already been
// executed by the time Scan is called so it has no chance to set the format.
// So for types that should be returned in binary th
var DefaultTypeFormats map[string]int16
func init() {
DefaultTypeFormats = make(map[string]int16)
DefaultTypeFormats["_bool"] = BinaryFormatCode
DefaultTypeFormats["_float4"] = BinaryFormatCode
DefaultTypeFormats["_float8"] = BinaryFormatCode
DefaultTypeFormats["_int2"] = BinaryFormatCode
DefaultTypeFormats["_int4"] = BinaryFormatCode
DefaultTypeFormats["_int8"] = BinaryFormatCode
DefaultTypeFormats["_text"] = BinaryFormatCode
DefaultTypeFormats["_timestamp"] = BinaryFormatCode
DefaultTypeFormats["_timestamptz"] = BinaryFormatCode
DefaultTypeFormats["_varchar"] = BinaryFormatCode
DefaultTypeFormats["bool"] = BinaryFormatCode
DefaultTypeFormats["bytea"] = BinaryFormatCode
DefaultTypeFormats["cidr"] = BinaryFormatCode
DefaultTypeFormats["date"] = BinaryFormatCode
DefaultTypeFormats["float4"] = BinaryFormatCode
DefaultTypeFormats["float8"] = BinaryFormatCode
DefaultTypeFormats["inet"] = BinaryFormatCode
DefaultTypeFormats["int2"] = BinaryFormatCode
DefaultTypeFormats["int4"] = BinaryFormatCode
DefaultTypeFormats["int8"] = BinaryFormatCode
DefaultTypeFormats["oid"] = BinaryFormatCode
DefaultTypeFormats["timestamp"] = BinaryFormatCode
DefaultTypeFormats["timestamptz"] = BinaryFormatCode
}
type SerializationError string
func (e SerializationError) Error() string {
return string(e)
}
// Scanner is an interface used to decode values from the PostgreSQL server.
type Scanner interface {
// Scan MUST check r.Type().DataType (to check by OID) or
// r.Type().DataTypeName (to check by name) to ensure that it is scanning an
// expected column type. It also MUST check r.Type().FormatCode before
// decoding. It should not assume that it was called on a data type or format
// that it understands.
Scan(r *ValueReader) error
}
// Encoder is an interface used to encode values for transmission to the
// PostgreSQL server.
type Encoder interface {
// Encode writes the value to w.
//
// If the value is NULL an int32(-1) should be written.
//
// Encode MUST check oid to see if the parameter data type is compatible. If
// this is not done, the PostgreSQL server may detect the error if the
// expected data size or format of the encoded data does not match. But if
// the encoded data is a valid representation of the data type PostgreSQL
// expects such as date and int4, incorrect data may be stored.
Encode(w *WriteBuf, oid Oid) error
// FormatCode returns the format that the encoder writes the value. It must be
// either pgx.TextFormatCode or pgx.BinaryFormatCode.
FormatCode() int16
}
// NullFloat32 represents an float4 that may be null. NullFloat32 implements the
// Scanner and Encoder interfaces so it may be used both as an argument to
// Query[Row] and a destination for Scan.
//
// If Valid is false then the value is NULL.
type NullFloat32 struct {
Float32 float32
Valid bool // Valid is true if Float32 is not NULL
}
func (n *NullFloat32) Scan(vr *ValueReader) error {
if vr.Type().DataType != Float4Oid {
return SerializationError(fmt.Sprintf("NullFloat32.Scan cannot decode OID %d", vr.Type().DataType))
}
if vr.Len() == -1 {
n.Float32, n.Valid = 0, false
return nil
}
n.Valid = true
n.Float32 = decodeFloat4(vr)
return vr.Err()
}
func (n NullFloat32) FormatCode() int16 { return BinaryFormatCode }
func (n NullFloat32) Encode(w *WriteBuf, oid Oid) error {
if oid != Float4Oid {
return SerializationError(fmt.Sprintf("NullFloat32.Encode cannot encode into OID %d", oid))
}
if !n.Valid {
w.WriteInt32(-1)
return nil
}
return encodeFloat4(w, n.Float32)
}
// NullFloat64 represents an float8 that may be null. NullFloat64 implements the
// Scanner and Encoder interfaces so it may be used both as an argument to
// Query[Row] and a destination for Scan.
//
// If Valid is false then the value is NULL.
type NullFloat64 struct {
Float64 float64
Valid bool // Valid is true if Float64 is not NULL
}
func (n *NullFloat64) Scan(vr *ValueReader) error {
if vr.Type().DataType != Float8Oid {
return SerializationError(fmt.Sprintf("NullFloat64.Scan cannot decode OID %d", vr.Type().DataType))
}
if vr.Len() == -1 {
n.Float64, n.Valid = 0, false
return nil
}
n.Valid = true
n.Float64 = decodeFloat8(vr)
return vr.Err()
}
func (n NullFloat64) FormatCode() int16 { return BinaryFormatCode }
func (n NullFloat64) Encode(w *WriteBuf, oid Oid) error {
if oid != Float8Oid {
return SerializationError(fmt.Sprintf("NullFloat64.EncodeBinary cannot encode into OID %d", oid))
}
if !n.Valid {
w.WriteInt32(-1)
return nil
}
return encodeFloat8(w, n.Float64)
}
// NullString represents an string that may be null. NullString implements the
// Scanner Encoder interfaces so it may be used both as an argument to
// Query[Row] and a destination for Scan.
//
// If Valid is false then the value is NULL.
type NullString struct {
String string
Valid bool // Valid is true if Int64 is not NULL
}
func (s *NullString) Scan(vr *ValueReader) error {
// Not checking oid as so we can scan anything into into a NullString - may revisit this decision later
if vr.Len() == -1 {
s.String, s.Valid = "", false
return nil
}
s.Valid = true
s.String = decodeText(vr)
return vr.Err()
}
func (n NullString) FormatCode() int16 { return TextFormatCode }
func (s NullString) Encode(w *WriteBuf, oid Oid) error {
if !s.Valid {
w.WriteInt32(-1)
return nil
}
return encodeText(w, s.String)
}
// NullInt16 represents an smallint that may be null. NullInt16 implements the
// Scanner and Encoder interfaces so it may be used both as an argument to
// Query[Row] and a destination for Scan for prepared and unprepared queries.
//
// If Valid is false then the value is NULL.
type NullInt16 struct {
Int16 int16
Valid bool // Valid is true if Int16 is not NULL
}
func (n *NullInt16) Scan(vr *ValueReader) error {
if vr.Type().DataType != Int2Oid {
return SerializationError(fmt.Sprintf("NullInt16.Scan cannot decode OID %d", vr.Type().DataType))
}
if vr.Len() == -1 {
n.Int16, n.Valid = 0, false
return nil
}
n.Valid = true
n.Int16 = decodeInt2(vr)
return vr.Err()
}
func (n NullInt16) FormatCode() int16 { return BinaryFormatCode }
func (n NullInt16) Encode(w *WriteBuf, oid Oid) error {
if oid != Int2Oid {
return SerializationError(fmt.Sprintf("NullInt16.Encode cannot encode into OID %d", oid))
}
if !n.Valid {
w.WriteInt32(-1)
return nil
}
return encodeInt2(w, n.Int16)
}
// NullInt32 represents an integer that may be null. NullInt32 implements the
// Scanner and Encoder interfaces so it may be used both as an argument to
// Query[Row] and a destination for Scan.
//
// If Valid is false then the value is NULL.
type NullInt32 struct {
Int32 int32
Valid bool // Valid is true if Int64 is not NULL
}
func (n *NullInt32) Scan(vr *ValueReader) error {
if vr.Type().DataType != Int4Oid {
return SerializationError(fmt.Sprintf("NullInt32.Scan cannot decode OID %d", vr.Type().DataType))
}
if vr.Len() == -1 {
n.Int32, n.Valid = 0, false
return nil
}
n.Valid = true
n.Int32 = decodeInt4(vr)
return vr.Err()
}
func (n NullInt32) FormatCode() int16 { return BinaryFormatCode }
func (n NullInt32) Encode(w *WriteBuf, oid Oid) error {
if oid != Int4Oid {
return SerializationError(fmt.Sprintf("NullInt32.Encode cannot encode into OID %d", oid))
}
if !n.Valid {
w.WriteInt32(-1)
return nil
}
return encodeInt4(w, n.Int32)
}
// NullInt64 represents an bigint that may be null. NullInt64 implements the
// Scanner and Encoder interfaces so it may be used both as an argument to
// Query[Row] and a destination for Scan.
//
// If Valid is false then the value is NULL.
type NullInt64 struct {
Int64 int64
Valid bool // Valid is true if Int64 is not NULL
}
func (n *NullInt64) Scan(vr *ValueReader) error {
if vr.Type().DataType != Int8Oid {
return SerializationError(fmt.Sprintf("NullInt64.Scan cannot decode OID %d", vr.Type().DataType))
}
if vr.Len() == -1 {
n.Int64, n.Valid = 0, false
return nil
}
n.Valid = true
n.Int64 = decodeInt8(vr)
return vr.Err()
}
func (n NullInt64) FormatCode() int16 { return BinaryFormatCode }
func (n NullInt64) Encode(w *WriteBuf, oid Oid) error {
if oid != Int8Oid {
return SerializationError(fmt.Sprintf("NullInt64.Encode cannot encode into OID %d", oid))
}
if !n.Valid {
w.WriteInt32(-1)
return nil
}
return encodeInt8(w, n.Int64)
}
// NullBool represents an bool that may be null. NullBool implements the Scanner
// and Encoder interfaces so it may be used both as an argument to Query[Row]
// and a destination for Scan.
//
// If Valid is false then the value is NULL.
type NullBool struct {
Bool bool
Valid bool // Valid is true if Bool is not NULL
}
func (n *NullBool) Scan(vr *ValueReader) error {
if vr.Type().DataType != BoolOid {
return SerializationError(fmt.Sprintf("NullBool.Scan cannot decode OID %d", vr.Type().DataType))
}
if vr.Len() == -1 {
n.Bool, n.Valid = false, false
return nil
}
n.Valid = true
n.Bool = decodeBool(vr)
return vr.Err()
}
func (n NullBool) FormatCode() int16 { return BinaryFormatCode }
func (n NullBool) Encode(w *WriteBuf, oid Oid) error {
if oid != BoolOid {
return SerializationError(fmt.Sprintf("NullBool.Encode cannot encode into OID %d", oid))
}
if !n.Valid {
w.WriteInt32(-1)
return nil
}
return encodeBool(w, n.Bool)
}
// NullTime represents an bigint that may be null. NullTime implements the
// Scanner and Encoder interfaces so it may be used both as an argument to
// Query[Row] and a destination for Scan.
//
// If Valid is false then the value is NULL.
type NullTime struct {
Time time.Time
Valid bool // Valid is true if Time is not NULL
}
func (n *NullTime) Scan(vr *ValueReader) error {
oid := vr.Type().DataType
if oid != TimestampTzOid && oid != TimestampOid {
return SerializationError(fmt.Sprintf("NullTime.Scan cannot decode OID %d", vr.Type().DataType))
}
if vr.Len() == -1 {
n.Time, n.Valid = time.Time{}, false
return nil
}
n.Valid = true
if oid == TimestampTzOid {
n.Time = decodeTimestampTz(vr)
} else {
n.Time = decodeTimestamp(vr)
}
return vr.Err()
}
func (n NullTime) FormatCode() int16 { return BinaryFormatCode }
func (n NullTime) Encode(w *WriteBuf, oid Oid) error {
if oid != TimestampTzOid && oid != TimestampOid {
return SerializationError(fmt.Sprintf("NullTime.Encode cannot encode into OID %d", oid))
}
if !n.Valid {
w.WriteInt32(-1)
return nil
}
if oid == TimestampTzOid {
return encodeTimestampTz(w, n.Time)
} else {
return encodeTimestamp(w, n.Time)
}
}
// Hstore represents an hstore column. It does not support a null column or null
// key values (use NullHstore for this). Hstore implements the Scanner and
// Encoder interfaces so it may be used both as an argument to Query[Row] and a
// destination for Scan.
type Hstore map[string]string
func (h *Hstore) Scan(vr *ValueReader) error {
//oid for hstore not standardized, so we check its type name
if vr.Type().DataTypeName != "hstore" {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode type %s into Hstore", vr.Type().DataTypeName)))
return nil
}
if vr.Len() == -1 {
vr.Fatal(ProtocolError("Cannot decode null column into Hstore"))
return nil
}
switch vr.Type().FormatCode {
case TextFormatCode:
m, err := parseHstoreToMap(vr.ReadString(vr.Len()))
if err != nil {
vr.Fatal(ProtocolError(fmt.Sprintf("Can't decode hstore column: %v", err)))
return nil
}
hm := Hstore(m)
*h = hm
return nil
case BinaryFormatCode:
vr.Fatal(ProtocolError("Can't decode binary hstore"))
return nil
default:
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return nil
}
}
func (h Hstore) FormatCode() int16 { return TextFormatCode }
func (h Hstore) Encode(w *WriteBuf, oid Oid) error {
var buf bytes.Buffer
i := 0
for k, v := range h {
i++
ks := strings.Replace(k, `\`, `\\`, -1)
ks = strings.Replace(ks, `"`, `\"`, -1)
vs := strings.Replace(v, `\`, `\\`, -1)
vs = strings.Replace(vs, `"`, `\"`, -1)
buf.WriteString(fmt.Sprintf(`"%s"=>"%s"`, ks, vs))
if i < len(h) {
buf.WriteString(", ")
}
}
w.WriteInt32(int32(buf.Len()))
w.WriteBytes(buf.Bytes())
return nil
}
// NullHstore represents an hstore column that can be null or have null values
// associated with its keys. NullHstore implements the Scanner and Encoder
// interfaces so it may be used both as an argument to Query[Row] and a
// destination for Scan.
//
// If Valid is false, then the value of the entire hstore column is NULL
// If any of the NullString values in Store has Valid set to false, the key
// appears in the hstore column, but its value is explicitly set to NULL.
type NullHstore struct {
Hstore map[string]NullString
Valid bool
}
func (h *NullHstore) Scan(vr *ValueReader) error {
//oid for hstore not standardized, so we check its type name
if vr.Type().DataTypeName != "hstore" {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode type %s into NullHstore", vr.Type().DataTypeName)))
return nil
}
if vr.Len() == -1 {
h.Valid = false
return nil
}
switch vr.Type().FormatCode {
case TextFormatCode:
store, err := parseHstoreToNullHstore(vr.ReadString(vr.Len()))
if err != nil {
vr.Fatal(ProtocolError(fmt.Sprintf("Can't decode hstore column: %v", err)))
return nil
}
h.Valid = true
h.Hstore = store
return nil
case BinaryFormatCode:
vr.Fatal(ProtocolError("Can't decode binary hstore"))
return nil
default:
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return nil
}
}
func (h NullHstore) FormatCode() int16 { return TextFormatCode }
func (h NullHstore) Encode(w *WriteBuf, oid Oid) error {
var buf bytes.Buffer
if !h.Valid {
w.WriteInt32(-1)
return nil
}
i := 0
for k, v := range h.Hstore {
i++
ks := strings.Replace(k, `\`, `\\`, -1)
ks = strings.Replace(ks, `"`, `\"`, -1)
if v.Valid {
vs := strings.Replace(v.String, `\`, `\\`, -1)
vs = strings.Replace(vs, `"`, `\"`, -1)
buf.WriteString(fmt.Sprintf(`"%s"=>"%s"`, ks, vs))
} else {
buf.WriteString(fmt.Sprintf(`"%s"=>NULL`, ks))
}
if i < len(h.Hstore) {
buf.WriteString(", ")
}
}
w.WriteInt32(int32(buf.Len()))
w.WriteBytes(buf.Bytes())
return nil
}
func decodeBool(vr *ValueReader) bool {
if vr.Len() == -1 {
vr.Fatal(ProtocolError("Cannot decode null into bool"))
return false
}
if vr.Type().DataType != BoolOid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into bool", vr.Type().DataType)))
return false
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return false
}
if vr.Len() != 1 {
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an bool: %d", vr.Len())))
return false
}
b := vr.ReadByte()
return b != 0
}
func encodeBool(w *WriteBuf, value interface{}) error {
v, ok := value.(bool)
if !ok {
return fmt.Errorf("Expected bool, received %T", value)
}
w.WriteInt32(1)
var n byte
if v {
n = 1
}
w.WriteByte(n)
return nil
}
func decodeInt8(vr *ValueReader) int64 {
if vr.Len() == -1 {
vr.Fatal(ProtocolError("Cannot decode null into int64"))
return 0
}
if vr.Type().DataType != Int8Oid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into int8", vr.Type().DataType)))
return 0
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return 0
}
if vr.Len() != 8 {
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an int8: %d", vr.Len())))
return 0
}
return vr.ReadInt64()
}
func encodeInt8(w *WriteBuf, value interface{}) error {
var v int64
switch value := value.(type) {
case int8:
v = int64(value)
case uint8:
v = int64(value)
case int16:
v = int64(value)
case uint16:
v = int64(value)
case int32:
v = int64(value)
case uint32:
v = int64(value)
case int64:
v = int64(value)
case uint64:
if value > math.MaxInt64 {
return fmt.Errorf("uint64 %d is larger than max int64 %d", value, int64(math.MaxInt64))
}
v = int64(value)
case int:
v = int64(value)
default:
return fmt.Errorf("Expected integer representable in int64, received %T %v", value, value)
}
w.WriteInt32(8)
w.WriteInt64(v)
return nil
}
func decodeInt2(vr *ValueReader) int16 {
if vr.Len() == -1 {
vr.Fatal(ProtocolError("Cannot decode null into int16"))
return 0
}
if vr.Type().DataType != Int2Oid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into int16", vr.Type().DataType)))
return 0
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return 0
}
if vr.Len() != 2 {
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an int2: %d", vr.Len())))
return 0
}
return vr.ReadInt16()
}
func encodeInt2(w *WriteBuf, value interface{}) error {
var v int16
switch value := value.(type) {
case int8:
v = int16(value)
case uint8:
v = int16(value)
case int16:
v = int16(value)
case uint16:
if value > math.MaxInt16 {
return fmt.Errorf("%T %d is larger than max int16 %d", value, value, math.MaxInt16)
}
v = int16(value)
case int32:
if value > math.MaxInt16 {
return fmt.Errorf("%T %d is larger than max int16 %d", value, value, math.MaxInt16)
}
v = int16(value)
case uint32:
if value > math.MaxInt16 {
return fmt.Errorf("%T %d is larger than max int16 %d", value, value, math.MaxInt16)
}
v = int16(value)
case int64:
if value > math.MaxInt16 {
return fmt.Errorf("%T %d is larger than max int16 %d", value, value, math.MaxInt16)
}
v = int16(value)
case uint64:
if value > math.MaxInt16 {
return fmt.Errorf("%T %d is larger than max int16 %d", value, value, math.MaxInt16)
}
v = int16(value)
case int:
if value > math.MaxInt16 {
return fmt.Errorf("%T %d is larger than max int16 %d", value, value, math.MaxInt16)
}
v = int16(value)
default:
return fmt.Errorf("Expected integer representable in int16, received %T %v", value, value)
}
w.WriteInt32(2)
w.WriteInt16(v)
return nil
}
func decodeInt4(vr *ValueReader) int32 {
if vr.Len() == -1 {
vr.Fatal(ProtocolError("Cannot decode null into int32"))
return 0
}
if vr.Type().DataType != Int4Oid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into int32", vr.Type().DataType)))
return 0
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return 0
}
if vr.Len() != 4 {
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an int4: %d", vr.Len())))
return 0
}
return vr.ReadInt32()
}
func encodeInt4(w *WriteBuf, value interface{}) error {
var v int32
switch value := value.(type) {
case int8:
v = int32(value)
case uint8:
v = int32(value)
case int16:
v = int32(value)
case uint16:
v = int32(value)
case int32:
v = int32(value)
case uint32:
if value > math.MaxInt32 {
return fmt.Errorf("%T %d is larger than max int32 %d", value, value, math.MaxInt32)
}
v = int32(value)
case int64:
if value > math.MaxInt32 {
return fmt.Errorf("%T %d is larger than max int32 %d", value, value, math.MaxInt32)
}
v = int32(value)
case uint64:
if value > math.MaxInt32 {
return fmt.Errorf("%T %d is larger than max int32 %d", value, value, math.MaxInt32)
}
v = int32(value)
case int:
if value > math.MaxInt32 {
return fmt.Errorf("%T %d is larger than max int32 %d", value, value, math.MaxInt32)
}
v = int32(value)
default:
return fmt.Errorf("Expected integer representable in int32, received %T %v", value, value)
}
w.WriteInt32(4)
w.WriteInt32(v)
return nil
}
func decodeOid(vr *ValueReader) Oid {
if vr.Len() == -1 {
vr.Fatal(ProtocolError("Cannot decode null into Oid"))
return 0
}
if vr.Type().DataType != OidOid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into pgx.Oid", vr.Type().DataType)))
return 0
}
// Oid needs to decode text format because it is used in loadPgTypes
switch vr.Type().FormatCode {
case TextFormatCode:
s := vr.ReadString(vr.Len())
n, err := strconv.ParseInt(s, 10, 32)
if err != nil {
vr.Fatal(ProtocolError(fmt.Sprintf("Received invalid Oid: %v", s)))
}
return Oid(n)
case BinaryFormatCode:
if vr.Len() != 4 {
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an Oid: %d", vr.Len())))
return 0
}
return Oid(vr.ReadInt32())
default:
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return Oid(0)
}
}
func encodeOid(w *WriteBuf, value interface{}) error {
v, ok := value.(Oid)
if !ok {
return fmt.Errorf("Expected Oid, received %T", value)
}
w.WriteInt32(4)
w.WriteInt32(int32(v))
return nil
}
func decodeFloat4(vr *ValueReader) float32 {
if vr.Len() == -1 {
vr.Fatal(ProtocolError("Cannot decode null into float32"))
return 0
}
if vr.Type().DataType != Float4Oid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into float32", vr.Type().DataType)))
return 0
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return 0
}
if vr.Len() != 4 {
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an float4: %d", vr.Len())))
return 0
}
i := vr.ReadInt32()
return math.Float32frombits(uint32(i))
}
func encodeFloat4(w *WriteBuf, value interface{}) error {
var v float32
switch value := value.(type) {
case float32:
v = float32(value)
case float64:
if value > math.MaxFloat32 {
return fmt.Errorf("%T %f is larger than max float32 %f", value, math.MaxFloat32)
}
v = float32(value)
default:
return fmt.Errorf("Expected float representable in float32, received %T %v", value, value)
}
w.WriteInt32(4)
w.WriteInt32(int32(math.Float32bits(v)))
return nil
}
func decodeFloat8(vr *ValueReader) float64 {
if vr.Len() == -1 {
vr.Fatal(ProtocolError("Cannot decode null into float64"))
return 0
}
if vr.Type().DataType != Float8Oid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into float64", vr.Type().DataType)))
return 0
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return 0
}
if vr.Len() != 8 {
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an float8: %d", vr.Len())))
return 0
}
i := vr.ReadInt64()
return math.Float64frombits(uint64(i))
}
func encodeFloat8(w *WriteBuf, value interface{}) error {
var v float64
switch value := value.(type) {
case float32:
v = float64(value)
case float64:
v = float64(value)
default:
return fmt.Errorf("Expected float representable in float64, received %T %v", value, value)
}
w.WriteInt32(8)
w.WriteInt64(int64(math.Float64bits(v)))
return nil
}
func decodeText(vr *ValueReader) string {
if vr.Len() == -1 {
vr.Fatal(ProtocolError("Cannot decode null into string"))
return ""
}
return vr.ReadString(vr.Len())
}
func encodeText(w *WriteBuf, value interface{}) error {
switch t := value.(type) {
case string:
w.WriteInt32(int32(len(t)))
w.WriteBytes([]byte(t))
case []byte:
w.WriteInt32(int32(len(t)))
w.WriteBytes(t)
default:
return fmt.Errorf("Expected string, received %T", value)
}
return nil
}
func decodeBytea(vr *ValueReader) []byte {
if vr.Len() == -1 {
return nil
}
if vr.Type().DataType != ByteaOid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []byte", vr.Type().DataType)))
return nil
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return nil
}
return vr.ReadBytes(vr.Len())
}
func encodeBytea(w *WriteBuf, value interface{}) error {
b, ok := value.([]byte)
if !ok {
return fmt.Errorf("Expected []byte, received %T", value)
}
w.WriteInt32(int32(len(b)))
w.WriteBytes(b)
return nil
}
func decodeDate(vr *ValueReader) time.Time {
var zeroTime time.Time
if vr.Len() == -1 {
vr.Fatal(ProtocolError("Cannot decode null into time.Time"))
return zeroTime
}
if vr.Type().DataType != DateOid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into time.Time", vr.Type().DataType)))
return zeroTime
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return zeroTime
}
if vr.Len() != 4 {
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an date: %d", vr.Len())))
}
dayOffset := vr.ReadInt32()
return time.Date(2000, 1, int(1+dayOffset), 0, 0, 0, 0, time.Local)
}
func encodeDate(w *WriteBuf, value interface{}) error {
t, ok := value.(time.Time)
if !ok {
return fmt.Errorf("Expected time.Time, received %T", value)
}
s := t.Format("2006-01-02")
return encodeText(w, s)
}
const microsecFromUnixEpochToY2K = 946684800 * 1000000
func decodeTimestampTz(vr *ValueReader) time.Time {
var zeroTime time.Time
if vr.Len() == -1 {
vr.Fatal(ProtocolError("Cannot decode null into time.Time"))
return zeroTime
}
if vr.Type().DataType != TimestampTzOid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into time.Time", vr.Type().DataType)))
return zeroTime
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return zeroTime
}
if vr.Len() != 8 {
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an timestamptz: %d", vr.Len())))
return zeroTime
}
microsecSinceY2K := vr.ReadInt64()
microsecSinceUnixEpoch := microsecFromUnixEpochToY2K + microsecSinceY2K
return time.Unix(microsecSinceUnixEpoch/1000000, (microsecSinceUnixEpoch%1000000)*1000)
}
func encodeTimestampTz(w *WriteBuf, value interface{}) error {
t, ok := value.(time.Time)
if !ok {
return fmt.Errorf("Expected time.Time, received %T", value)
}
microsecSinceUnixEpoch := t.Unix()*1000000 + int64(t.Nanosecond())/1000
microsecSinceY2K := microsecSinceUnixEpoch - microsecFromUnixEpochToY2K
w.WriteInt32(8)
w.WriteInt64(microsecSinceY2K)
return nil
}
func decodeTimestamp(vr *ValueReader) time.Time {
var zeroTime time.Time
if vr.Len() == -1 {
vr.Fatal(ProtocolError("Cannot decode null into timestamp"))
return zeroTime
}
if vr.Type().DataType != TimestampOid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into time.Time", vr.Type().DataType)))
return zeroTime
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return zeroTime
}
if vr.Len() != 8 {
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an timestamp: %d", vr.Len())))
return zeroTime
}
microsecSinceY2K := vr.ReadInt64()
microsecSinceUnixEpoch := microsecFromUnixEpochToY2K + microsecSinceY2K
return time.Unix(microsecSinceUnixEpoch/1000000, (microsecSinceUnixEpoch%1000000)*1000)
}
func encodeTimestamp(w *WriteBuf, value interface{}) error {
return encodeTimestampTz(w, value)
}
func decodeInet(vr *ValueReader) net.IPNet {
var zero net.IPNet
if vr.Len() == -1 {
vr.Fatal(ProtocolError("Cannot decode null into net.IPNet"))
return zero
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return zero
}
pgType := vr.Type()
if vr.Len() != 8 && vr.Len() != 20 {
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for a %s: %d", pgType.Name, vr.Len())))
return zero
}
if pgType.DataType != InetOid && pgType.DataType != CidrOid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into %s", pgType.DataType, pgType.Name)))
return zero
}
vr.ReadByte() // ignore family
bits := vr.ReadByte()
vr.ReadByte() // ignore is_cidr
addressLength := vr.ReadByte()
var ipnet net.IPNet
ipnet.IP = vr.ReadBytes(int32(addressLength))
ipnet.Mask = net.CIDRMask(int(bits), int(addressLength)*8)
return ipnet
}
func encodeInet(w *WriteBuf, value interface{}) error {
var ipnet net.IPNet
switch value := value.(type) {
case net.IPNet:
ipnet = value
default:
return fmt.Errorf("Expected net.IPNet, received %T %v", value, value)
}
var size int32
var family byte
switch len(ipnet.IP) {
case net.IPv4len:
size = 8
family = w.conn.pgsql_af_inet
case net.IPv6len:
size = 20
family = w.conn.pgsql_af_inet6
default:
return fmt.Errorf("Unexpected IP length: %v", len(ipnet.IP))
}
w.WriteInt32(size)
w.WriteByte(family)
ones, _ := ipnet.Mask.Size()
w.WriteByte(byte(ones))
w.WriteByte(0) // is_cidr is ignored on server
w.WriteByte(byte(len(ipnet.IP)))
w.WriteBytes(ipnet.IP)
return nil
}
func decode1dArrayHeader(vr *ValueReader) (length int32, err error) {
numDims := vr.ReadInt32()
if numDims > 1 {
return 0, ProtocolError(fmt.Sprintf("Expected array to have 0 or 1 dimension, but it had %v", numDims))
}
vr.ReadInt32() // 0 if no nulls / 1 if there is one or more nulls -- but we don't care
vr.ReadInt32() // element oid
if numDims == 0 {
return 0, nil
}
length = vr.ReadInt32()
idxFirstElem := vr.ReadInt32()
if idxFirstElem != 1 {
return 0, ProtocolError(fmt.Sprintf("Expected array's first element to start a index 1, but it is %d", idxFirstElem))
}
return length, nil
}
func decodeBoolArray(vr *ValueReader) []bool {
if vr.Len() == -1 {
return nil
}
if vr.Type().DataType != BoolArrayOid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []bool", vr.Type().DataType)))
return nil
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return nil
}
numElems, err := decode1dArrayHeader(vr)
if err != nil {
vr.Fatal(err)
return nil
}
a := make([]bool, int(numElems))
for i := 0; i < len(a); i++ {
elSize := vr.ReadInt32()
switch elSize {
case 1:
if vr.ReadByte() == 1 {
a[i] = true
}
case -1:
vr.Fatal(ProtocolError("Cannot decode null element"))
return nil
default:
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an bool element: %d", elSize)))
return nil
}
}
return a
}
func encodeBoolArray(w *WriteBuf, value interface{}) error {
slice, ok := value.([]bool)
if !ok {
return fmt.Errorf("Expected []bool, received %T", value)
}
encodeArrayHeader(w, BoolOid, len(slice), 5)
for _, v := range slice {
w.WriteInt32(1)
var b byte
if v {
b = 1
}
w.WriteByte(b)
}
return nil
}
func decodeInt2Array(vr *ValueReader) []int16 {
if vr.Len() == -1 {
return nil
}
if vr.Type().DataType != Int2ArrayOid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []int16", vr.Type().DataType)))
return nil
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return nil
}
numElems, err := decode1dArrayHeader(vr)
if err != nil {
vr.Fatal(err)
return nil
}
a := make([]int16, int(numElems))
for i := 0; i < len(a); i++ {
elSize := vr.ReadInt32()
switch elSize {
case 2:
a[i] = vr.ReadInt16()
case -1:
vr.Fatal(ProtocolError("Cannot decode null element"))
return nil
default:
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an int2 element: %d", elSize)))
return nil
}
}
return a
}
func encodeInt2Array(w *WriteBuf, value interface{}) error {
slice, ok := value.([]int16)
if !ok {
return fmt.Errorf("Expected []int16, received %T", value)
}
encodeArrayHeader(w, Int2Oid, len(slice), 6)
for _, v := range slice {
w.WriteInt32(2)
w.WriteInt16(v)
}
return nil
}
func decodeInt4Array(vr *ValueReader) []int32 {
if vr.Len() == -1 {
return nil
}
if vr.Type().DataType != Int4ArrayOid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []int32", vr.Type().DataType)))
return nil
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return nil
}
numElems, err := decode1dArrayHeader(vr)
if err != nil {
vr.Fatal(err)
return nil
}
a := make([]int32, int(numElems))
for i := 0; i < len(a); i++ {
elSize := vr.ReadInt32()
switch elSize {
case 4:
a[i] = vr.ReadInt32()
case -1:
vr.Fatal(ProtocolError("Cannot decode null element"))
return nil
default:
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an int4 element: %d", elSize)))
return nil
}
}
return a
}
func encodeInt4Array(w *WriteBuf, value interface{}) error {
slice, ok := value.([]int32)
if !ok {
return fmt.Errorf("Expected []int32, received %T", value)
}
encodeArrayHeader(w, Int4Oid, len(slice), 8)
for _, v := range slice {
w.WriteInt32(4)
w.WriteInt32(v)
}
return nil
}
func decodeInt8Array(vr *ValueReader) []int64 {
if vr.Len() == -1 {
return nil
}
if vr.Type().DataType != Int8ArrayOid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []int64", vr.Type().DataType)))
return nil
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return nil
}
numElems, err := decode1dArrayHeader(vr)
if err != nil {
vr.Fatal(err)
return nil
}
a := make([]int64, int(numElems))
for i := 0; i < len(a); i++ {
elSize := vr.ReadInt32()
switch elSize {
case 8:
a[i] = vr.ReadInt64()
case -1:
vr.Fatal(ProtocolError("Cannot decode null element"))
return nil
default:
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an int8 element: %d", elSize)))
return nil
}
}
return a
}
func encodeInt8Array(w *WriteBuf, value interface{}) error {
slice, ok := value.([]int64)
if !ok {
return fmt.Errorf("Expected []int64, received %T", value)
}
encodeArrayHeader(w, Int8Oid, len(slice), 12)
for _, v := range slice {
w.WriteInt32(8)
w.WriteInt64(v)
}
return nil
}
func decodeFloat4Array(vr *ValueReader) []float32 {
if vr.Len() == -1 {
return nil
}
if vr.Type().DataType != Float4ArrayOid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []float32", vr.Type().DataType)))
return nil
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return nil
}
numElems, err := decode1dArrayHeader(vr)
if err != nil {
vr.Fatal(err)
return nil
}
a := make([]float32, int(numElems))
for i := 0; i < len(a); i++ {
elSize := vr.ReadInt32()
switch elSize {
case 4:
n := vr.ReadInt32()
a[i] = math.Float32frombits(uint32(n))
case -1:
vr.Fatal(ProtocolError("Cannot decode null element"))
return nil
default:
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an float4 element: %d", elSize)))
return nil
}
}
return a
}
func encodeFloat4Array(w *WriteBuf, value interface{}) error {
slice, ok := value.([]float32)
if !ok {
return fmt.Errorf("Expected []float32, received %T", value)
}
encodeArrayHeader(w, Float4Oid, len(slice), 8)
for _, v := range slice {
w.WriteInt32(4)
w.WriteInt32(int32(math.Float32bits(v)))
}
return nil
}
func decodeFloat8Array(vr *ValueReader) []float64 {
if vr.Len() == -1 {
return nil
}
if vr.Type().DataType != Float8ArrayOid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []float64", vr.Type().DataType)))
return nil
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return nil
}
numElems, err := decode1dArrayHeader(vr)
if err != nil {
vr.Fatal(err)
return nil
}
a := make([]float64, int(numElems))
for i := 0; i < len(a); i++ {
elSize := vr.ReadInt32()
switch elSize {
case 8:
n := vr.ReadInt64()
a[i] = math.Float64frombits(uint64(n))
case -1:
vr.Fatal(ProtocolError("Cannot decode null element"))
return nil
default:
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an float4 element: %d", elSize)))
return nil
}
}
return a
}
func encodeFloat8Array(w *WriteBuf, value interface{}) error {
slice, ok := value.([]float64)
if !ok {
return fmt.Errorf("Expected []float64, received %T", value)
}
encodeArrayHeader(w, Float8Oid, len(slice), 12)
for _, v := range slice {
w.WriteInt32(8)
w.WriteInt64(int64(math.Float64bits(v)))
}
return nil
}
func decodeTextArray(vr *ValueReader) []string {
if vr.Len() == -1 {
return nil
}
if vr.Type().DataType != TextArrayOid && vr.Type().DataType != VarcharArrayOid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []string", vr.Type().DataType)))
return nil
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return nil
}
numElems, err := decode1dArrayHeader(vr)
if err != nil {
vr.Fatal(err)
return nil
}
a := make([]string, int(numElems))
for i := 0; i < len(a); i++ {
elSize := vr.ReadInt32()
if elSize == -1 {
vr.Fatal(ProtocolError("Cannot decode null element"))
return nil
}
a[i] = vr.ReadString(elSize)
}
return a
}
func encodeTextArray(w *WriteBuf, value interface{}, elOid Oid) error {
slice, ok := value.([]string)
if !ok {
return fmt.Errorf("Expected []string, received %T", value)
}
var totalStringSize int
for _, v := range slice {
totalStringSize += len(v)
}
size := 20 + len(slice)*4 + totalStringSize
w.WriteInt32(int32(size))
w.WriteInt32(1) // number of dimensions
w.WriteInt32(0) // no nulls
w.WriteInt32(int32(elOid)) // type of elements
w.WriteInt32(int32(len(slice))) // number of elements
w.WriteInt32(1) // index of first element
for _, v := range slice {
w.WriteInt32(int32(len(v)))
w.WriteBytes([]byte(v))
}
return nil
}
func decodeTimestampArray(vr *ValueReader) []time.Time {
if vr.Len() == -1 {
return nil
}
if vr.Type().DataType != TimestampArrayOid && vr.Type().DataType != TimestampTzArrayOid {
vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []time.Time", vr.Type().DataType)))
return nil
}
if vr.Type().FormatCode != BinaryFormatCode {
vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode)))
return nil
}
numElems, err := decode1dArrayHeader(vr)
if err != nil {
vr.Fatal(err)
return nil
}
a := make([]time.Time, int(numElems))
for i := 0; i < len(a); i++ {
elSize := vr.ReadInt32()
switch elSize {
case 8:
microsecSinceY2K := vr.ReadInt64()
microsecSinceUnixEpoch := microsecFromUnixEpochToY2K + microsecSinceY2K
a[i] = time.Unix(microsecSinceUnixEpoch/1000000, (microsecSinceUnixEpoch%1000000)*1000)
case -1:
vr.Fatal(ProtocolError("Cannot decode null element"))
return nil
default:
vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an time.Time element: %d", elSize)))
return nil
}
}
return a
}
func encodeTimestampArray(w *WriteBuf, value interface{}, elOid Oid) error {
slice, ok := value.([]time.Time)
if !ok {
return fmt.Errorf("Expected []time.Time, received %T", value)
}
encodeArrayHeader(w, int(elOid), len(slice), 12)
for _, t := range slice {
w.WriteInt32(8)
microsecSinceUnixEpoch := t.Unix()*1000000 + int64(t.Nanosecond())/1000
microsecSinceY2K := microsecSinceUnixEpoch - microsecFromUnixEpochToY2K
w.WriteInt64(microsecSinceY2K)
}
return nil
}
func encodeArrayHeader(w *WriteBuf, oid, length, sizePerItem int) {
w.WriteInt32(int32(20 + length*sizePerItem))
w.WriteInt32(1) // number of dimensions
w.WriteInt32(0) // no nulls
w.WriteInt32(int32(oid)) // type of elements
w.WriteInt32(int32(length)) // number of elements
w.WriteInt32(1) // index of first element
}