mirror of https://github.com/jackc/pgx.git
318 lines
9.9 KiB
Go
318 lines
9.9 KiB
Go
package pgx
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"net"
|
|
"time"
|
|
)
|
|
|
|
const (
|
|
copyBothResponse = 'W'
|
|
walData = 'w'
|
|
senderKeepalive = 'k'
|
|
standbyStatusUpdate = 'r'
|
|
initialReplicationResponseTimeout = 5 * time.Second
|
|
)
|
|
|
|
var epochNano int64
|
|
|
|
func init() {
|
|
epochNano = time.Date(2000, 1, 1, 0, 0, 0, 0, time.UTC).UnixNano()
|
|
}
|
|
|
|
// Format the given 64bit LSN value into the XXX/XXX format,
|
|
// which is the format reported by postgres.
|
|
func FormatLSN(lsn uint64) string {
|
|
return fmt.Sprintf("%X/%X", uint32(lsn>>32), uint32(lsn))
|
|
}
|
|
|
|
// Parse the given XXX/XXX format LSN as reported by postgres,
|
|
// into a 64 bit integer as used internally by the wire procotols
|
|
func ParseLSN(lsn string) (outputLsn uint64, err error) {
|
|
var upperHalf uint64
|
|
var lowerHalf uint64
|
|
var nparsed int
|
|
nparsed, err = fmt.Sscanf(lsn, "%X/%X", &upperHalf, &lowerHalf)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
if nparsed != 2 {
|
|
err = errors.New(fmt.Sprintf("Failed to parsed LSN: %s", lsn))
|
|
return
|
|
}
|
|
|
|
outputLsn = (upperHalf << 32) + lowerHalf
|
|
return
|
|
}
|
|
|
|
// The WAL message contains WAL payload entry data
|
|
type WalMessage struct {
|
|
// The WAL start position of this data. This
|
|
// is the WAL position we need to track.
|
|
WalStart uint64
|
|
// The server wal end and server time are
|
|
// documented to track the end position and current
|
|
// time of the server, both of which appear to be
|
|
// unimplemented in pg 9.5.
|
|
ServerWalEnd uint64
|
|
ServerTime uint64
|
|
// The WAL data is the raw unparsed binary WAL entry.
|
|
// The contents of this are determined by the output
|
|
// logical encoding plugin.
|
|
WalData []byte
|
|
}
|
|
|
|
func (w *WalMessage) Time() time.Time {
|
|
return time.Unix(0, (int64(w.ServerTime)*1000)+epochNano)
|
|
}
|
|
|
|
func (w *WalMessage) ByteLag() uint64 {
|
|
return (w.ServerWalEnd - w.WalStart)
|
|
}
|
|
|
|
func (w *WalMessage) String() string {
|
|
return fmt.Sprintf("Wal: %s Time: %s Lag: %d", FormatLSN(w.WalStart), w.Time(), w.ByteLag())
|
|
}
|
|
|
|
// The server heartbeat is sent periodically from the server,
|
|
// including server status, and a reply request field
|
|
type ServerHeartbeat struct {
|
|
// The current max wal position on the server,
|
|
// used for lag tracking
|
|
ServerWalEnd uint64
|
|
// The server time, in microseconds since jan 1 2000
|
|
ServerTime uint64
|
|
// If 1, the server is requesting a standby status message
|
|
// to be sent immediately.
|
|
ReplyRequested byte
|
|
}
|
|
|
|
func (s *ServerHeartbeat) Time() time.Time {
|
|
return time.Unix(0, (int64(s.ServerTime)*1000)+epochNano)
|
|
}
|
|
|
|
func (s *ServerHeartbeat) String() string {
|
|
return fmt.Sprintf("WalEnd: %s ReplyRequested: %d T: %s", FormatLSN(s.ServerWalEnd), s.ReplyRequested, s.Time())
|
|
}
|
|
|
|
// The replication message wraps all possible messages from the
|
|
// server received during replication. At most one of the wal message
|
|
// or server heartbeat will be non-nil
|
|
type ReplicationMessage struct {
|
|
WalMessage *WalMessage
|
|
ServerHeartbeat *ServerHeartbeat
|
|
}
|
|
|
|
// The standby status is the client side heartbeat sent to the postgresql
|
|
// server to track the client wal positions. For practical purposes,
|
|
// all wal positions are typically set to the same value.
|
|
type StandbyStatus struct {
|
|
// The WAL position that's been locally written
|
|
WalWritePosition uint64
|
|
// The WAL position that's been locally flushed
|
|
WalFlushPosition uint64
|
|
// The WAL position that's been locally applied
|
|
WalApplyPosition uint64
|
|
// The client time in microseconds since jan 1 2000
|
|
ClientTime uint64
|
|
// If 1, requests the server to immediately send a
|
|
// server heartbeat
|
|
ReplyRequested byte
|
|
}
|
|
|
|
// Create a standby status struct, which sets all the WAL positions
|
|
// to the given wal position, and the client time to the current time.
|
|
func NewStandbyStatus(walPosition uint64) (status *StandbyStatus) {
|
|
status = new(StandbyStatus)
|
|
status.WalFlushPosition = walPosition
|
|
status.WalApplyPosition = walPosition
|
|
status.WalWritePosition = walPosition
|
|
status.ClientTime = uint64((time.Now().UnixNano() - epochNano) / 1000)
|
|
return
|
|
}
|
|
|
|
// Send standby status to the server, which both acts as a keepalive
|
|
// message to the server, as well as carries the WAL position of the
|
|
// client, which then updates the server's replication slot position.
|
|
func (c *Conn) SendStandbyStatus(k *StandbyStatus) (err error) {
|
|
writeBuf := newWriteBuf(c, copyData)
|
|
writeBuf.WriteByte(standbyStatusUpdate)
|
|
writeBuf.WriteInt64(int64(k.WalWritePosition))
|
|
writeBuf.WriteInt64(int64(k.WalFlushPosition))
|
|
writeBuf.WriteInt64(int64(k.WalApplyPosition))
|
|
writeBuf.WriteInt64(int64(k.ClientTime))
|
|
writeBuf.WriteByte(k.ReplyRequested)
|
|
|
|
writeBuf.closeMsg()
|
|
|
|
_, err = c.conn.Write(writeBuf.buf)
|
|
if err != nil {
|
|
c.die(err)
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// Send the message to formally stop the replication stream. This
|
|
// is done before calling Close() during a clean shutdown.
|
|
func (c *Conn) StopReplication() (err error) {
|
|
writeBuf := newWriteBuf(c, copyDone)
|
|
|
|
writeBuf.closeMsg()
|
|
|
|
_, err = c.conn.Write(writeBuf.buf)
|
|
if err != nil {
|
|
c.die(err)
|
|
}
|
|
return
|
|
}
|
|
|
|
|
|
func (c *Conn) readReplicationMessage() (r *ReplicationMessage, err error) {
|
|
var t byte
|
|
var reader *msgReader
|
|
t, reader, err = c.rxMsg()
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
switch t {
|
|
case noticeResponse:
|
|
pgError := c.rxErrorResponse(reader)
|
|
if c.shouldLog(LogLevelInfo) {
|
|
c.log(LogLevelInfo, pgError.Error())
|
|
}
|
|
case errorResponse:
|
|
err = c.rxErrorResponse(reader)
|
|
if c.shouldLog(LogLevelError) {
|
|
c.log(LogLevelError, err.Error())
|
|
}
|
|
return
|
|
case copyBothResponse:
|
|
// This is the tail end of the replication process start,
|
|
// and can be safely ignored
|
|
return
|
|
case copyData:
|
|
var msgType byte
|
|
msgType = reader.readByte()
|
|
switch msgType {
|
|
case walData:
|
|
walStart := reader.readInt64()
|
|
serverWalEnd := reader.readInt64()
|
|
serverTime := reader.readInt64()
|
|
walData := reader.readBytes(reader.msgBytesRemaining)
|
|
walMessage := WalMessage{WalStart: uint64(walStart),
|
|
ServerWalEnd: uint64(serverWalEnd),
|
|
ServerTime: uint64(serverTime),
|
|
WalData: walData,
|
|
}
|
|
|
|
return &ReplicationMessage{WalMessage: &walMessage}, nil
|
|
case senderKeepalive:
|
|
serverWalEnd := reader.readInt64()
|
|
serverTime := reader.readInt64()
|
|
replyNow := reader.readByte()
|
|
h := &ServerHeartbeat{ServerWalEnd: uint64(serverWalEnd), ServerTime: uint64(serverTime), ReplyRequested: replyNow}
|
|
return &ReplicationMessage{ServerHeartbeat: h}, nil
|
|
default:
|
|
if c.shouldLog(LogLevelError) {
|
|
c.log(LogLevelError,"Unexpected data playload message type %v", t)
|
|
}
|
|
}
|
|
default:
|
|
if c.shouldLog(LogLevelError) {
|
|
c.log(LogLevelError,"Unexpected replication message type %v", t)
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// Wait for a single replication message up to timeout time.
|
|
//
|
|
// Properly using this requires some knowledge of the postgres replication mechanisms,
|
|
// as the client can receive both WAL data (the ultimate payload) and server heartbeat
|
|
// updates. The caller also must send standby status updates in order to keep the connection
|
|
// alive and working.
|
|
//
|
|
// This returns pgx.ErrNotificationTimeout when there is no replication message by the specified
|
|
// duration.
|
|
func (c *Conn) WaitForReplicationMessage(timeout time.Duration) (r *ReplicationMessage, err error) {
|
|
var zeroTime time.Time
|
|
|
|
deadline := time.Now().Add(timeout)
|
|
|
|
// Use SetReadDeadline to implement the timeout. SetReadDeadline will
|
|
// cause operations to fail with a *net.OpError that has a Timeout()
|
|
// of true. Because the normal pgx rxMsg path considers any error to
|
|
// have potentially corrupted the state of the connection, it dies
|
|
// on any errors. So to avoid timeout errors in rxMsg we set the
|
|
// deadline and peek into the reader. If a timeout error occurs there
|
|
// we don't break the pgx connection. If the Peek returns that data
|
|
// is available then we turn off the read deadline before the rxMsg.
|
|
err = c.conn.SetReadDeadline(deadline)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Wait until there is a byte available before continuing onto the normal msg reading path
|
|
_, err = c.reader.Peek(1)
|
|
if err != nil {
|
|
c.conn.SetReadDeadline(zeroTime) // we can only return one error and we already have one -- so ignore possiple error from SetReadDeadline
|
|
if err, ok := err.(*net.OpError); ok && err.Timeout() {
|
|
return nil, ErrNotificationTimeout
|
|
}
|
|
return nil, err
|
|
}
|
|
|
|
err = c.conn.SetReadDeadline(zeroTime)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return c.readReplicationMessage()
|
|
}
|
|
|
|
// Start a replication connection, sending WAL data to the given replication
|
|
// receiver. This function wraps a START_REPLICATION command as documented
|
|
// here:
|
|
// https://www.postgresql.org/docs/9.5/static/protocol-replication.html
|
|
//
|
|
// Once started, the client needs to invoke WaitForReplicationMessage() in order
|
|
// to fetch the WAL and standby status. Also, it is the responsibility of the caller
|
|
// to periodically send StandbyStatus messages to update the replication slot position.
|
|
//
|
|
// This function assumes that slotName has already been created. In order to omit the timeline argument
|
|
// pass a -1 for the timeline to get the server default behavior.
|
|
func (c *Conn) StartReplication(slotName string, startLsn uint64, timeline int64, pluginArguments ...string) (err error) {
|
|
var queryString string
|
|
if timeline >= 0 {
|
|
queryString = fmt.Sprintf("START_REPLICATION SLOT %s LOGICAL %s TIMELINE %d", slotName, FormatLSN(startLsn), timeline)
|
|
} else {
|
|
queryString = fmt.Sprintf("START_REPLICATION SLOT %s LOGICAL %s", slotName, FormatLSN(startLsn))
|
|
}
|
|
|
|
for _, arg := range pluginArguments {
|
|
queryString += fmt.Sprintf(" %s", arg)
|
|
}
|
|
|
|
if err = c.sendQuery(queryString); err != nil {
|
|
return
|
|
}
|
|
|
|
// The first replication message that comes back here will be (in a success case)
|
|
// a empty CopyBoth that is (apparently) sent as the confirmation that the replication has
|
|
// started. This call will either return nil, nil or if it returns an error
|
|
// that indicates the start replication command failed
|
|
var r *ReplicationMessage
|
|
r, err = c.WaitForReplicationMessage(initialReplicationResponseTimeout)
|
|
if err != nil && r != nil {
|
|
if c.shouldLog(LogLevelError) {
|
|
c.log(LogLevelError, "Unxpected replication message %v", r)
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|