package pgx import ( "bytes" "fmt" "math" "strconv" "strings" "time" ) // PostgreSQL oids for common types const ( BoolOid = 16 ByteaOid = 17 Int8Oid = 20 Int2Oid = 21 Int4Oid = 23 TextOid = 25 OidOid = 26 Float4Oid = 700 Float8Oid = 701 BoolArrayOid = 1000 Int2ArrayOid = 1005 Int4ArrayOid = 1007 TextArrayOid = 1009 VarcharArrayOid = 1015 Int8ArrayOid = 1016 Float4ArrayOid = 1021 Float8ArrayOid = 1022 VarcharOid = 1043 DateOid = 1082 TimestampOid = 1114 TimestampArrayOid = 1115 TimestampTzOid = 1184 TimestampTzArrayOid = 1185 ) // PostgreSQL format codes const ( TextFormatCode = 0 BinaryFormatCode = 1 ) // DefaultTypeFormats maps type names to their default requested format (text // or binary). In theory the Scanner interface should be the one to determine // the format of the returned values. However, the query has already been // executed by the time Scan is called so it has no chance to set the format. // So for types that should be returned in binary th var DefaultTypeFormats map[string]int16 func init() { DefaultTypeFormats = make(map[string]int16) DefaultTypeFormats["_float4"] = BinaryFormatCode DefaultTypeFormats["_float8"] = BinaryFormatCode DefaultTypeFormats["_bool"] = BinaryFormatCode DefaultTypeFormats["_int2"] = BinaryFormatCode DefaultTypeFormats["_int4"] = BinaryFormatCode DefaultTypeFormats["_int8"] = BinaryFormatCode DefaultTypeFormats["_text"] = BinaryFormatCode DefaultTypeFormats["_varchar"] = BinaryFormatCode DefaultTypeFormats["_timestamp"] = BinaryFormatCode DefaultTypeFormats["_timestamptz"] = BinaryFormatCode DefaultTypeFormats["bool"] = BinaryFormatCode DefaultTypeFormats["bytea"] = BinaryFormatCode DefaultTypeFormats["date"] = BinaryFormatCode DefaultTypeFormats["float4"] = BinaryFormatCode DefaultTypeFormats["float8"] = BinaryFormatCode DefaultTypeFormats["int2"] = BinaryFormatCode DefaultTypeFormats["int4"] = BinaryFormatCode DefaultTypeFormats["int8"] = BinaryFormatCode DefaultTypeFormats["oid"] = BinaryFormatCode DefaultTypeFormats["timestamp"] = BinaryFormatCode DefaultTypeFormats["timestamptz"] = BinaryFormatCode } type SerializationError string func (e SerializationError) Error() string { return string(e) } // Scanner is an interface used to decode values from the PostgreSQL server. type Scanner interface { // Scan MUST check r.Type().DataType (to check by OID) or // r.Type().DataTypeName (to check by name) to ensure that it is scanning an // expected column type. It also MUST check r.Type().FormatCode before // decoding. It should not assume that it was called on a data type or format // that it understands. Scan(r *ValueReader) error } // Encoder is an interface used to encode values for transmission to the // PostgreSQL server. type Encoder interface { // Encode writes the value to w. // // If the value is NULL an int32(-1) should be written. // // Encode MUST check oid to see if the parameter data type is compatible. If // this is not done, the PostgreSQL server may detect the error if the // expected data size or format of the encoded data does not match. But if // the encoded data is a valid representation of the data type PostgreSQL // expects such as date and int4, incorrect data may be stored. Encode(w *WriteBuf, oid Oid) error // FormatCode returns the format that the encoder writes the value. It must be // either pgx.TextFormatCode or pgx.BinaryFormatCode. FormatCode() int16 } // NullFloat32 represents an float4 that may be null. NullFloat32 implements the // Scanner and Encoder interfaces so it may be used both as an argument to // Query[Row] and a destination for Scan. // // If Valid is false then the value is NULL. type NullFloat32 struct { Float32 float32 Valid bool // Valid is true if Float32 is not NULL } func (n *NullFloat32) Scan(vr *ValueReader) error { if vr.Type().DataType != Float4Oid { return SerializationError(fmt.Sprintf("NullFloat32.Scan cannot decode OID %d", vr.Type().DataType)) } if vr.Len() == -1 { n.Float32, n.Valid = 0, false return nil } n.Valid = true n.Float32 = decodeFloat4(vr) return vr.Err() } func (n NullFloat32) FormatCode() int16 { return BinaryFormatCode } func (n NullFloat32) Encode(w *WriteBuf, oid Oid) error { if oid != Float4Oid { return SerializationError(fmt.Sprintf("NullFloat32.Encode cannot encode into OID %d", oid)) } if !n.Valid { w.WriteInt32(-1) return nil } return encodeFloat4(w, n.Float32) } // NullFloat64 represents an float8 that may be null. NullFloat64 implements the // Scanner and Encoder interfaces so it may be used both as an argument to // Query[Row] and a destination for Scan. // // If Valid is false then the value is NULL. type NullFloat64 struct { Float64 float64 Valid bool // Valid is true if Float64 is not NULL } func (n *NullFloat64) Scan(vr *ValueReader) error { if vr.Type().DataType != Float8Oid { return SerializationError(fmt.Sprintf("NullFloat64.Scan cannot decode OID %d", vr.Type().DataType)) } if vr.Len() == -1 { n.Float64, n.Valid = 0, false return nil } n.Valid = true n.Float64 = decodeFloat8(vr) return vr.Err() } func (n NullFloat64) FormatCode() int16 { return BinaryFormatCode } func (n NullFloat64) Encode(w *WriteBuf, oid Oid) error { if oid != Float8Oid { return SerializationError(fmt.Sprintf("NullFloat64.EncodeBinary cannot encode into OID %d", oid)) } if !n.Valid { w.WriteInt32(-1) return nil } return encodeFloat8(w, n.Float64) } // NullString represents an string that may be null. NullString implements the // Scanner Encoder interfaces so it may be used both as an argument to // Query[Row] and a destination for Scan. // // If Valid is false then the value is NULL. type NullString struct { String string Valid bool // Valid is true if Int64 is not NULL } func (s *NullString) Scan(vr *ValueReader) error { // Not checking oid as so we can scan anything into into a NullString - may revisit this decision later if vr.Len() == -1 { s.String, s.Valid = "", false return nil } s.Valid = true s.String = decodeText(vr) return vr.Err() } func (n NullString) FormatCode() int16 { return TextFormatCode } func (s NullString) Encode(w *WriteBuf, oid Oid) error { if !s.Valid { w.WriteInt32(-1) return nil } return encodeText(w, s.String) } // NullInt16 represents an smallint that may be null. NullInt16 implements the // Scanner and Encoder interfaces so it may be used both as an argument to // Query[Row] and a destination for Scan for prepared and unprepared queries. // // If Valid is false then the value is NULL. type NullInt16 struct { Int16 int16 Valid bool // Valid is true if Int16 is not NULL } func (n *NullInt16) Scan(vr *ValueReader) error { if vr.Type().DataType != Int2Oid { return SerializationError(fmt.Sprintf("NullInt16.Scan cannot decode OID %d", vr.Type().DataType)) } if vr.Len() == -1 { n.Int16, n.Valid = 0, false return nil } n.Valid = true n.Int16 = decodeInt2(vr) return vr.Err() } func (n NullInt16) FormatCode() int16 { return BinaryFormatCode } func (n NullInt16) Encode(w *WriteBuf, oid Oid) error { if oid != Int2Oid { return SerializationError(fmt.Sprintf("NullInt16.Encode cannot encode into OID %d", oid)) } if !n.Valid { w.WriteInt32(-1) return nil } return encodeInt2(w, n.Int16) } // NullInt32 represents an integer that may be null. NullInt32 implements the // Scanner and Encoder interfaces so it may be used both as an argument to // Query[Row] and a destination for Scan. // // If Valid is false then the value is NULL. type NullInt32 struct { Int32 int32 Valid bool // Valid is true if Int64 is not NULL } func (n *NullInt32) Scan(vr *ValueReader) error { if vr.Type().DataType != Int4Oid { return SerializationError(fmt.Sprintf("NullInt32.Scan cannot decode OID %d", vr.Type().DataType)) } if vr.Len() == -1 { n.Int32, n.Valid = 0, false return nil } n.Valid = true n.Int32 = decodeInt4(vr) return vr.Err() } func (n NullInt32) FormatCode() int16 { return BinaryFormatCode } func (n NullInt32) Encode(w *WriteBuf, oid Oid) error { if oid != Int4Oid { return SerializationError(fmt.Sprintf("NullInt32.Encode cannot encode into OID %d", oid)) } if !n.Valid { w.WriteInt32(-1) return nil } return encodeInt4(w, n.Int32) } // NullInt64 represents an bigint that may be null. NullInt64 implements the // Scanner and Encoder interfaces so it may be used both as an argument to // Query[Row] and a destination for Scan. // // If Valid is false then the value is NULL. type NullInt64 struct { Int64 int64 Valid bool // Valid is true if Int64 is not NULL } func (n *NullInt64) Scan(vr *ValueReader) error { if vr.Type().DataType != Int8Oid { return SerializationError(fmt.Sprintf("NullInt64.Scan cannot decode OID %d", vr.Type().DataType)) } if vr.Len() == -1 { n.Int64, n.Valid = 0, false return nil } n.Valid = true n.Int64 = decodeInt8(vr) return vr.Err() } func (n NullInt64) FormatCode() int16 { return BinaryFormatCode } func (n NullInt64) Encode(w *WriteBuf, oid Oid) error { if oid != Int8Oid { return SerializationError(fmt.Sprintf("NullInt64.Encode cannot encode into OID %d", oid)) } if !n.Valid { w.WriteInt32(-1) return nil } return encodeInt8(w, n.Int64) } // NullBool represents an bool that may be null. NullBool implements the Scanner // and Encoder interfaces so it may be used both as an argument to Query[Row] // and a destination for Scan. // // If Valid is false then the value is NULL. type NullBool struct { Bool bool Valid bool // Valid is true if Bool is not NULL } func (n *NullBool) Scan(vr *ValueReader) error { if vr.Type().DataType != BoolOid { return SerializationError(fmt.Sprintf("NullBool.Scan cannot decode OID %d", vr.Type().DataType)) } if vr.Len() == -1 { n.Bool, n.Valid = false, false return nil } n.Valid = true n.Bool = decodeBool(vr) return vr.Err() } func (n NullBool) FormatCode() int16 { return BinaryFormatCode } func (n NullBool) Encode(w *WriteBuf, oid Oid) error { if oid != BoolOid { return SerializationError(fmt.Sprintf("NullBool.Encode cannot encode into OID %d", oid)) } if !n.Valid { w.WriteInt32(-1) return nil } return encodeBool(w, n.Bool) } // NullTime represents an bigint that may be null. NullTime implements the // Scanner and Encoder interfaces so it may be used both as an argument to // Query[Row] and a destination for Scan. // // If Valid is false then the value is NULL. type NullTime struct { Time time.Time Valid bool // Valid is true if Time is not NULL } func (n *NullTime) Scan(vr *ValueReader) error { oid := vr.Type().DataType if oid != TimestampTzOid && oid != TimestampOid { return SerializationError(fmt.Sprintf("NullTime.Scan cannot decode OID %d", vr.Type().DataType)) } if vr.Len() == -1 { n.Time, n.Valid = time.Time{}, false return nil } n.Valid = true if oid == TimestampTzOid { n.Time = decodeTimestampTz(vr) } else { n.Time = decodeTimestamp(vr) } return vr.Err() } func (n NullTime) FormatCode() int16 { return BinaryFormatCode } func (n NullTime) Encode(w *WriteBuf, oid Oid) error { if oid != TimestampTzOid && oid != TimestampOid { return SerializationError(fmt.Sprintf("NullTime.Encode cannot encode into OID %d", oid)) } if !n.Valid { w.WriteInt32(-1) return nil } if oid == TimestampTzOid { return encodeTimestampTz(w, n.Time) } else { return encodeTimestamp(w, n.Time) } } // Hstore represents an hstore column. It does not support a null column or null // key values (use NullHstore for this). Hstore implements the Scanner and // Encoder interfaces so it may be used both as an argument to Query[Row] and a // destination for Scan. type Hstore map[string]string func (h *Hstore) Scan(vr *ValueReader) error { //oid for hstore not standardized, so we check its type name if vr.Type().DataTypeName != "hstore" { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode type %s into Hstore", vr.Type().DataTypeName))) return nil } if vr.Len() == -1 { vr.Fatal(ProtocolError("Cannot decode null column into Hstore")) return nil } switch vr.Type().FormatCode { case TextFormatCode: m, err := parseHstoreToMap(vr.ReadString(vr.Len())) if err != nil { vr.Fatal(ProtocolError(fmt.Sprintf("Can't decode hstore column: %v", err))) return nil } hm := Hstore(m) *h = hm return nil case BinaryFormatCode: vr.Fatal(ProtocolError("Can't decode binary hstore")) return nil default: vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return nil } } func (h Hstore) FormatCode() int16 { return TextFormatCode } func (h Hstore) Encode(w *WriteBuf, oid Oid) error { var buf bytes.Buffer i := 0 for k, v := range h { i++ ks := strings.Replace(k, `\`, `\\`, -1) ks = strings.Replace(ks, `"`, `\"`, -1) vs := strings.Replace(v, `\`, `\\`, -1) vs = strings.Replace(vs, `"`, `\"`, -1) buf.WriteString(fmt.Sprintf(`"%s"=>"%s"`, ks, vs)) if i < len(h) { buf.WriteString(", ") } } w.WriteInt32(int32(buf.Len())) w.WriteBytes(buf.Bytes()) return nil } // NullHstore represents an hstore column that can be null or have null values // associated with its keys. NullHstore implements the Scanner and Encoder // interfaces so it may be used both as an argument to Query[Row] and a // destination for Scan. // // If Valid is false, then the value of the entire hstore column is NULL // If any of the NullString values in Store has Valid set to false, the key // appears in the hstore column, but its value is explicitly set to NULL. type NullHstore struct { Hstore map[string]NullString Valid bool } func (h *NullHstore) Scan(vr *ValueReader) error { //oid for hstore not standardized, so we check its type name if vr.Type().DataTypeName != "hstore" { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode type %s into NullHstore", vr.Type().DataTypeName))) return nil } if vr.Len() == -1 { h.Valid = false return nil } switch vr.Type().FormatCode { case TextFormatCode: store, err := parseHstoreToNullHstore(vr.ReadString(vr.Len())) if err != nil { vr.Fatal(ProtocolError(fmt.Sprintf("Can't decode hstore column: %v", err))) return nil } h.Valid = true h.Hstore = store return nil case BinaryFormatCode: vr.Fatal(ProtocolError("Can't decode binary hstore")) return nil default: vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return nil } } func (h NullHstore) FormatCode() int16 { return TextFormatCode } func (h NullHstore) Encode(w *WriteBuf, oid Oid) error { var buf bytes.Buffer if !h.Valid { w.WriteInt32(-1) return nil } i := 0 for k, v := range h.Hstore { i++ ks := strings.Replace(k, `\`, `\\`, -1) ks = strings.Replace(ks, `"`, `\"`, -1) if v.Valid { vs := strings.Replace(v.String, `\`, `\\`, -1) vs = strings.Replace(vs, `"`, `\"`, -1) buf.WriteString(fmt.Sprintf(`"%s"=>"%s"`, ks, vs)) } else { buf.WriteString(fmt.Sprintf(`"%s"=>NULL`, ks)) } if i < len(h.Hstore) { buf.WriteString(", ") } } w.WriteInt32(int32(buf.Len())) w.WriteBytes(buf.Bytes()) return nil } func decodeBool(vr *ValueReader) bool { if vr.Len() == -1 { vr.Fatal(ProtocolError("Cannot decode null into bool")) return false } if vr.Type().DataType != BoolOid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into bool", vr.Type().DataType))) return false } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return false } if vr.Len() != 1 { vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an bool: %d", vr.Len()))) return false } b := vr.ReadByte() return b != 0 } func encodeBool(w *WriteBuf, value interface{}) error { v, ok := value.(bool) if !ok { return fmt.Errorf("Expected bool, received %T", value) } w.WriteInt32(1) var n byte if v { n = 1 } w.WriteByte(n) return nil } func decodeInt8(vr *ValueReader) int64 { if vr.Len() == -1 { vr.Fatal(ProtocolError("Cannot decode null into int64")) return 0 } if vr.Type().DataType != Int8Oid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into int8", vr.Type().DataType))) return 0 } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return 0 } if vr.Len() != 8 { vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an int8: %d", vr.Len()))) return 0 } return vr.ReadInt64() } func encodeInt8(w *WriteBuf, value interface{}) error { var v int64 switch value := value.(type) { case int8: v = int64(value) case uint8: v = int64(value) case int16: v = int64(value) case uint16: v = int64(value) case int32: v = int64(value) case uint32: v = int64(value) case int64: v = int64(value) case uint64: if value > math.MaxInt64 { return fmt.Errorf("uint64 %d is larger than max int64 %d", value, int64(math.MaxInt64)) } v = int64(value) case int: v = int64(value) default: return fmt.Errorf("Expected integer representable in int64, received %T %v", value, value) } w.WriteInt32(8) w.WriteInt64(v) return nil } func decodeInt2(vr *ValueReader) int16 { if vr.Len() == -1 { vr.Fatal(ProtocolError("Cannot decode null into int16")) return 0 } if vr.Type().DataType != Int2Oid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into int16", vr.Type().DataType))) return 0 } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return 0 } if vr.Len() != 2 { vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an int2: %d", vr.Len()))) return 0 } return vr.ReadInt16() } func encodeInt2(w *WriteBuf, value interface{}) error { var v int16 switch value := value.(type) { case int8: v = int16(value) case uint8: v = int16(value) case int16: v = int16(value) case uint16: if value > math.MaxInt16 { return fmt.Errorf("%T %d is larger than max int16 %d", value, value, math.MaxInt16) } v = int16(value) case int32: if value > math.MaxInt16 { return fmt.Errorf("%T %d is larger than max int16 %d", value, value, math.MaxInt16) } v = int16(value) case uint32: if value > math.MaxInt16 { return fmt.Errorf("%T %d is larger than max int16 %d", value, value, math.MaxInt16) } v = int16(value) case int64: if value > math.MaxInt16 { return fmt.Errorf("%T %d is larger than max int16 %d", value, value, math.MaxInt16) } v = int16(value) case uint64: if value > math.MaxInt16 { return fmt.Errorf("%T %d is larger than max int16 %d", value, value, math.MaxInt16) } v = int16(value) case int: if value > math.MaxInt16 { return fmt.Errorf("%T %d is larger than max int16 %d", value, value, math.MaxInt16) } v = int16(value) default: return fmt.Errorf("Expected integer representable in int16, received %T %v", value, value) } w.WriteInt32(2) w.WriteInt16(v) return nil } func decodeInt4(vr *ValueReader) int32 { if vr.Len() == -1 { vr.Fatal(ProtocolError("Cannot decode null into int32")) return 0 } if vr.Type().DataType != Int4Oid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into int32", vr.Type().DataType))) return 0 } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return 0 } if vr.Len() != 4 { vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an int4: %d", vr.Len()))) return 0 } return vr.ReadInt32() } func encodeInt4(w *WriteBuf, value interface{}) error { var v int32 switch value := value.(type) { case int8: v = int32(value) case uint8: v = int32(value) case int16: v = int32(value) case uint16: v = int32(value) case int32: v = int32(value) case uint32: if value > math.MaxInt32 { return fmt.Errorf("%T %d is larger than max int32 %d", value, value, math.MaxInt32) } v = int32(value) case int64: if value > math.MaxInt32 { return fmt.Errorf("%T %d is larger than max int32 %d", value, value, math.MaxInt32) } v = int32(value) case uint64: if value > math.MaxInt32 { return fmt.Errorf("%T %d is larger than max int32 %d", value, value, math.MaxInt32) } v = int32(value) case int: if value > math.MaxInt32 { return fmt.Errorf("%T %d is larger than max int32 %d", value, value, math.MaxInt32) } v = int32(value) default: return fmt.Errorf("Expected integer representable in int32, received %T %v", value, value) } w.WriteInt32(4) w.WriteInt32(v) return nil } func decodeOid(vr *ValueReader) Oid { if vr.Len() == -1 { vr.Fatal(ProtocolError("Cannot decode null into Oid")) return 0 } if vr.Type().DataType != OidOid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into pgx.Oid", vr.Type().DataType))) return 0 } // Oid needs to decode text format because it is used in loadPgTypes switch vr.Type().FormatCode { case TextFormatCode: s := vr.ReadString(vr.Len()) n, err := strconv.ParseInt(s, 10, 32) if err != nil { vr.Fatal(ProtocolError(fmt.Sprintf("Received invalid Oid: %v", s))) } return Oid(n) case BinaryFormatCode: if vr.Len() != 4 { vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an Oid: %d", vr.Len()))) return 0 } return Oid(vr.ReadInt32()) default: vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return Oid(0) } } func encodeOid(w *WriteBuf, value interface{}) error { v, ok := value.(Oid) if !ok { return fmt.Errorf("Expected Oid, received %T", value) } w.WriteInt32(4) w.WriteInt32(int32(v)) return nil } func decodeFloat4(vr *ValueReader) float32 { if vr.Len() == -1 { vr.Fatal(ProtocolError("Cannot decode null into float32")) return 0 } if vr.Type().DataType != Float4Oid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into float32", vr.Type().DataType))) return 0 } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return 0 } if vr.Len() != 4 { vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an float4: %d", vr.Len()))) return 0 } i := vr.ReadInt32() return math.Float32frombits(uint32(i)) } func encodeFloat4(w *WriteBuf, value interface{}) error { var v float32 switch value := value.(type) { case float32: v = float32(value) case float64: if value > math.MaxFloat32 { return fmt.Errorf("%T %f is larger than max float32 %f", value, math.MaxFloat32) } v = float32(value) default: return fmt.Errorf("Expected float representable in float32, received %T %v", value, value) } w.WriteInt32(4) w.WriteInt32(int32(math.Float32bits(v))) return nil } func decodeFloat8(vr *ValueReader) float64 { if vr.Len() == -1 { vr.Fatal(ProtocolError("Cannot decode null into float64")) return 0 } if vr.Type().DataType != Float8Oid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into float64", vr.Type().DataType))) return 0 } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return 0 } if vr.Len() != 8 { vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an float8: %d", vr.Len()))) return 0 } i := vr.ReadInt64() return math.Float64frombits(uint64(i)) } func encodeFloat8(w *WriteBuf, value interface{}) error { var v float64 switch value := value.(type) { case float32: v = float64(value) case float64: v = float64(value) default: return fmt.Errorf("Expected float representable in float64, received %T %v", value, value) } w.WriteInt32(8) w.WriteInt64(int64(math.Float64bits(v))) return nil } func decodeText(vr *ValueReader) string { if vr.Len() == -1 { vr.Fatal(ProtocolError("Cannot decode null into string")) return "" } return vr.ReadString(vr.Len()) } func encodeText(w *WriteBuf, value interface{}) error { switch t := value.(type) { case string: w.WriteInt32(int32(len(t))) w.WriteBytes([]byte(t)) case []byte: w.WriteInt32(int32(len(t))) w.WriteBytes(t) default: return fmt.Errorf("Expected string, received %T", value) } return nil } func decodeBytea(vr *ValueReader) []byte { if vr.Len() == -1 { return nil } if vr.Type().DataType != ByteaOid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []byte", vr.Type().DataType))) return nil } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return nil } return vr.ReadBytes(vr.Len()) } func encodeBytea(w *WriteBuf, value interface{}) error { b, ok := value.([]byte) if !ok { return fmt.Errorf("Expected []byte, received %T", value) } w.WriteInt32(int32(len(b))) w.WriteBytes(b) return nil } func decodeDate(vr *ValueReader) time.Time { var zeroTime time.Time if vr.Len() == -1 { vr.Fatal(ProtocolError("Cannot decode null into time.Time")) return zeroTime } if vr.Type().DataType != DateOid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into time.Time", vr.Type().DataType))) return zeroTime } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return zeroTime } if vr.Len() != 4 { vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an date: %d", vr.Len()))) } dayOffset := vr.ReadInt32() return time.Date(2000, 1, int(1+dayOffset), 0, 0, 0, 0, time.Local) } func encodeDate(w *WriteBuf, value interface{}) error { t, ok := value.(time.Time) if !ok { return fmt.Errorf("Expected time.Time, received %T", value) } s := t.Format("2006-01-02") return encodeText(w, s) } const microsecFromUnixEpochToY2K = 946684800 * 1000000 func decodeTimestampTz(vr *ValueReader) time.Time { var zeroTime time.Time if vr.Len() == -1 { vr.Fatal(ProtocolError("Cannot decode null into time.Time")) return zeroTime } if vr.Type().DataType != TimestampTzOid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into time.Time", vr.Type().DataType))) return zeroTime } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return zeroTime } if vr.Len() != 8 { vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an timestamptz: %d", vr.Len()))) return zeroTime } microsecSinceY2K := vr.ReadInt64() microsecSinceUnixEpoch := microsecFromUnixEpochToY2K + microsecSinceY2K return time.Unix(microsecSinceUnixEpoch/1000000, (microsecSinceUnixEpoch%1000000)*1000) } func encodeTimestampTz(w *WriteBuf, value interface{}) error { t, ok := value.(time.Time) if !ok { return fmt.Errorf("Expected time.Time, received %T", value) } microsecSinceUnixEpoch := t.Unix()*1000000 + int64(t.Nanosecond())/1000 microsecSinceY2K := microsecSinceUnixEpoch - microsecFromUnixEpochToY2K w.WriteInt32(8) w.WriteInt64(microsecSinceY2K) return nil } func decodeTimestamp(vr *ValueReader) time.Time { var zeroTime time.Time if vr.Len() == -1 { vr.Fatal(ProtocolError("Cannot decode null into timestamp")) return zeroTime } if vr.Type().DataType != TimestampOid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into time.Time", vr.Type().DataType))) return zeroTime } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return zeroTime } if vr.Len() != 8 { vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an timestamp: %d", vr.Len()))) } microsecSinceY2K := vr.ReadInt64() microsecSinceUnixEpoch := microsecFromUnixEpochToY2K + microsecSinceY2K return time.Unix(microsecSinceUnixEpoch/1000000, (microsecSinceUnixEpoch%1000000)*1000) } func encodeTimestamp(w *WriteBuf, value interface{}) error { return encodeTimestampTz(w, value) } func decode1dArrayHeader(vr *ValueReader) (length int32, err error) { numDims := vr.ReadInt32() if numDims > 1 { return 0, ProtocolError(fmt.Sprintf("Expected array to have 0 or 1 dimension, but it had %v", numDims)) } vr.ReadInt32() // 0 if no nulls / 1 if there is one or more nulls -- but we don't care vr.ReadInt32() // element oid if numDims == 0 { return 0, nil } length = vr.ReadInt32() idxFirstElem := vr.ReadInt32() if idxFirstElem != 1 { return 0, ProtocolError(fmt.Sprintf("Expected array's first element to start a index 1, but it is %d", idxFirstElem)) } return length, nil } func decodeBoolArray(vr *ValueReader) []bool { if vr.Len() == -1 { return nil } if vr.Type().DataType != BoolArrayOid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []bool", vr.Type().DataType))) return nil } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return nil } numElems, err := decode1dArrayHeader(vr) if err != nil { vr.Fatal(err) return nil } a := make([]bool, int(numElems)) for i := 0; i < len(a); i++ { elSize := vr.ReadInt32() switch elSize { case 1: if vr.ReadByte() == 1 { a[i] = true } case -1: vr.Fatal(ProtocolError("Cannot decode null element")) return nil default: vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an bool element: %d", elSize))) return nil } } return a } func encodeBoolArray(w *WriteBuf, value interface{}) error { slice, ok := value.([]bool) if !ok { return fmt.Errorf("Expected []bool, received %T", value) } encodeArrayHeader(w, BoolOid, len(slice), 5) for _, v := range slice { w.WriteInt32(1) var b byte if v { b = 1 } w.WriteByte(b) } return nil } func decodeInt2Array(vr *ValueReader) []int16 { if vr.Len() == -1 { return nil } if vr.Type().DataType != Int2ArrayOid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []int16", vr.Type().DataType))) return nil } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return nil } numElems, err := decode1dArrayHeader(vr) if err != nil { vr.Fatal(err) return nil } a := make([]int16, int(numElems)) for i := 0; i < len(a); i++ { elSize := vr.ReadInt32() switch elSize { case 2: a[i] = vr.ReadInt16() case -1: vr.Fatal(ProtocolError("Cannot decode null element")) return nil default: vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an int2 element: %d", elSize))) return nil } } return a } func encodeInt2Array(w *WriteBuf, value interface{}) error { slice, ok := value.([]int16) if !ok { return fmt.Errorf("Expected []int16, received %T", value) } encodeArrayHeader(w, Int2Oid, len(slice), 6) for _, v := range slice { w.WriteInt32(2) w.WriteInt16(v) } return nil } func decodeInt4Array(vr *ValueReader) []int32 { if vr.Len() == -1 { return nil } if vr.Type().DataType != Int4ArrayOid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []int32", vr.Type().DataType))) return nil } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return nil } numElems, err := decode1dArrayHeader(vr) if err != nil { vr.Fatal(err) return nil } a := make([]int32, int(numElems)) for i := 0; i < len(a); i++ { elSize := vr.ReadInt32() switch elSize { case 4: a[i] = vr.ReadInt32() case -1: vr.Fatal(ProtocolError("Cannot decode null element")) return nil default: vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an int4 element: %d", elSize))) return nil } } return a } func encodeInt4Array(w *WriteBuf, value interface{}) error { slice, ok := value.([]int32) if !ok { return fmt.Errorf("Expected []int32, received %T", value) } encodeArrayHeader(w, Int4Oid, len(slice), 8) for _, v := range slice { w.WriteInt32(4) w.WriteInt32(v) } return nil } func decodeInt8Array(vr *ValueReader) []int64 { if vr.Len() == -1 { return nil } if vr.Type().DataType != Int8ArrayOid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []int64", vr.Type().DataType))) return nil } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return nil } numElems, err := decode1dArrayHeader(vr) if err != nil { vr.Fatal(err) return nil } a := make([]int64, int(numElems)) for i := 0; i < len(a); i++ { elSize := vr.ReadInt32() switch elSize { case 8: a[i] = vr.ReadInt64() case -1: vr.Fatal(ProtocolError("Cannot decode null element")) return nil default: vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an int8 element: %d", elSize))) return nil } } return a } func encodeInt8Array(w *WriteBuf, value interface{}) error { slice, ok := value.([]int64) if !ok { return fmt.Errorf("Expected []int64, received %T", value) } encodeArrayHeader(w, Int8Oid, len(slice), 12) for _, v := range slice { w.WriteInt32(8) w.WriteInt64(v) } return nil } func decodeFloat4Array(vr *ValueReader) []float32 { if vr.Len() == -1 { return nil } if vr.Type().DataType != Float4ArrayOid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []float32", vr.Type().DataType))) return nil } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return nil } numElems, err := decode1dArrayHeader(vr) if err != nil { vr.Fatal(err) return nil } a := make([]float32, int(numElems)) for i := 0; i < len(a); i++ { elSize := vr.ReadInt32() switch elSize { case 4: n := vr.ReadInt32() a[i] = math.Float32frombits(uint32(n)) case -1: vr.Fatal(ProtocolError("Cannot decode null element")) return nil default: vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an float4 element: %d", elSize))) return nil } } return a } func encodeFloat4Array(w *WriteBuf, value interface{}) error { slice, ok := value.([]float32) if !ok { return fmt.Errorf("Expected []float32, received %T", value) } encodeArrayHeader(w, Float4Oid, len(slice), 8) for _, v := range slice { w.WriteInt32(4) w.WriteInt32(int32(math.Float32bits(v))) } return nil } func decodeFloat8Array(vr *ValueReader) []float64 { if vr.Len() == -1 { return nil } if vr.Type().DataType != Float8ArrayOid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []float64", vr.Type().DataType))) return nil } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return nil } numElems, err := decode1dArrayHeader(vr) if err != nil { vr.Fatal(err) return nil } a := make([]float64, int(numElems)) for i := 0; i < len(a); i++ { elSize := vr.ReadInt32() switch elSize { case 8: n := vr.ReadInt64() a[i] = math.Float64frombits(uint64(n)) case -1: vr.Fatal(ProtocolError("Cannot decode null element")) return nil default: vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an float4 element: %d", elSize))) return nil } } return a } func encodeFloat8Array(w *WriteBuf, value interface{}) error { slice, ok := value.([]float64) if !ok { return fmt.Errorf("Expected []float64, received %T", value) } encodeArrayHeader(w, Float8Oid, len(slice), 12) for _, v := range slice { w.WriteInt32(8) w.WriteInt64(int64(math.Float64bits(v))) } return nil } func decodeTextArray(vr *ValueReader) []string { if vr.Len() == -1 { return nil } if vr.Type().DataType != TextArrayOid && vr.Type().DataType != VarcharArrayOid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []string", vr.Type().DataType))) return nil } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return nil } numElems, err := decode1dArrayHeader(vr) if err != nil { vr.Fatal(err) return nil } a := make([]string, int(numElems)) for i := 0; i < len(a); i++ { elSize := vr.ReadInt32() if elSize == -1 { vr.Fatal(ProtocolError("Cannot decode null element")) return nil } a[i] = vr.ReadString(elSize) } return a } func encodeTextArray(w *WriteBuf, value interface{}, elOid Oid) error { slice, ok := value.([]string) if !ok { return fmt.Errorf("Expected []string, received %T", value) } var totalStringSize int for _, v := range slice { totalStringSize += len(v) } size := 20 + len(slice)*4 + totalStringSize w.WriteInt32(int32(size)) w.WriteInt32(1) // number of dimensions w.WriteInt32(0) // no nulls w.WriteInt32(int32(elOid)) // type of elements w.WriteInt32(int32(len(slice))) // number of elements w.WriteInt32(1) // index of first element for _, v := range slice { w.WriteInt32(int32(len(v))) w.WriteBytes([]byte(v)) } return nil } func decodeTimestampArray(vr *ValueReader) []time.Time { if vr.Len() == -1 { return nil } if vr.Type().DataType != TimestampArrayOid && vr.Type().DataType != TimestampTzArrayOid { vr.Fatal(ProtocolError(fmt.Sprintf("Cannot decode oid %v into []time.Time", vr.Type().DataType))) return nil } if vr.Type().FormatCode != BinaryFormatCode { vr.Fatal(ProtocolError(fmt.Sprintf("Unknown field description format code: %v", vr.Type().FormatCode))) return nil } numElems, err := decode1dArrayHeader(vr) if err != nil { vr.Fatal(err) return nil } a := make([]time.Time, int(numElems)) for i := 0; i < len(a); i++ { elSize := vr.ReadInt32() switch elSize { case 8: microsecSinceY2K := vr.ReadInt64() microsecSinceUnixEpoch := microsecFromUnixEpochToY2K + microsecSinceY2K a[i] = time.Unix(microsecSinceUnixEpoch/1000000, (microsecSinceUnixEpoch%1000000)*1000) case -1: vr.Fatal(ProtocolError("Cannot decode null element")) return nil default: vr.Fatal(ProtocolError(fmt.Sprintf("Received an invalid size for an time.Time element: %d", elSize))) return nil } } return a } func encodeTimestampArray(w *WriteBuf, value interface{}, elOid Oid) error { slice, ok := value.([]time.Time) if !ok { return fmt.Errorf("Expected []time.Time, received %T", value) } encodeArrayHeader(w, int(elOid), len(slice), 12) for _, t := range slice { w.WriteInt32(8) microsecSinceUnixEpoch := t.Unix()*1000000 + int64(t.Nanosecond())/1000 microsecSinceY2K := microsecSinceUnixEpoch - microsecFromUnixEpochToY2K w.WriteInt64(microsecSinceY2K) } return nil } func encodeArrayHeader(w *WriteBuf, oid, length, sizePerItem int) { w.WriteInt32(int32(20 + length*sizePerItem)) w.WriteInt32(1) // number of dimensions w.WriteInt32(0) // no nulls w.WriteInt32(int32(oid)) // type of elements w.WriteInt32(int32(length)) // number of elements w.WriteInt32(1) // index of first element }