Convert inet and cidr to codec

query-exec-mode
Jack Christensen 2022-01-15 09:48:21 -06:00
parent f743007fb4
commit 05598d4ca6
9 changed files with 318 additions and 2043 deletions

View File

@ -3,6 +3,7 @@ package pgtype
import (
"fmt"
"math"
"net"
"strconv"
"time"
)
@ -340,3 +341,43 @@ func (w *timeWrapper) ScanDate(v Date) error {
func (w timeWrapper) DateValue() (Date, error) {
return Date{Time: time.Time(w), Valid: true}, nil
}
type netIPNetWrapper net.IPNet
func (w *netIPNetWrapper) ScanInet(v Inet) error {
if !v.Valid {
return fmt.Errorf("cannot scan NULL into *net.IPNet")
}
*w = (netIPNetWrapper)(*v.IPNet)
return nil
}
func (w netIPNetWrapper) InetValue() (Inet, error) {
return Inet{IPNet: (*net.IPNet)(&w), Valid: true}, nil
}
type netIPWrapper net.IP
func (w *netIPWrapper) ScanInet(v Inet) error {
if !v.Valid {
*w = nil
return nil
}
if oneCount, bitCount := v.IPNet.Mask.Size(); oneCount != bitCount {
return fmt.Errorf("cannot scan %v to *net.IP", v)
}
*w = netIPWrapper(v.IPNet.IP)
return nil
}
func (w netIPWrapper) InetValue() (Inet, error) {
if w == nil {
return Inet{}, nil
}
bitCount := len(w) * 8
mask := net.CIDRMask(bitCount, bitCount)
return Inet{IPNet: &net.IPNet{Mask: mask, IP: net.IP(w)}, Valid: true}, nil
}

View File

@ -1,31 +0,0 @@
package pgtype
type CIDR Inet
func (dst *CIDR) Set(src interface{}) error {
return (*Inet)(dst).Set(src)
}
func (dst CIDR) Get() interface{} {
return (Inet)(dst).Get()
}
func (src *CIDR) AssignTo(dst interface{}) error {
return (*Inet)(src).AssignTo(dst)
}
func (dst *CIDR) DecodeText(ci *ConnInfo, src []byte) error {
return (*Inet)(dst).DecodeText(ci, src)
}
func (dst *CIDR) DecodeBinary(ci *ConnInfo, src []byte) error {
return (*Inet)(dst).DecodeBinary(ci, src)
}
func (src CIDR) EncodeText(ci *ConnInfo, buf []byte) ([]byte, error) {
return (Inet)(src).EncodeText(ci, buf)
}
func (src CIDR) EncodeBinary(ci *ConnInfo, buf []byte) ([]byte, error) {
return (Inet)(src).EncodeBinary(ci, buf)
}

View File

@ -1,533 +0,0 @@
// Code generated by erb. DO NOT EDIT.
package pgtype
import (
"database/sql/driver"
"encoding/binary"
"fmt"
"net"
"reflect"
"github.com/jackc/pgio"
)
type CIDRArray struct {
Elements []CIDR
Dimensions []ArrayDimension
Valid bool
}
func (dst *CIDRArray) Set(src interface{}) error {
// untyped nil and typed nil interfaces are different
if src == nil {
*dst = CIDRArray{}
return nil
}
if value, ok := src.(interface{ Get() interface{} }); ok {
value2 := value.Get()
if value2 != value {
return dst.Set(value2)
}
}
// Attempt to match to select common types:
switch value := src.(type) {
case []*net.IPNet:
if value == nil {
*dst = CIDRArray{}
} else if len(value) == 0 {
*dst = CIDRArray{Valid: true}
} else {
elements := make([]CIDR, len(value))
for i := range value {
if err := elements[i].Set(value[i]); err != nil {
return err
}
}
*dst = CIDRArray{
Elements: elements,
Dimensions: []ArrayDimension{{Length: int32(len(elements)), LowerBound: 1}},
Valid: true,
}
}
case []net.IP:
if value == nil {
*dst = CIDRArray{}
} else if len(value) == 0 {
*dst = CIDRArray{Valid: true}
} else {
elements := make([]CIDR, len(value))
for i := range value {
if err := elements[i].Set(value[i]); err != nil {
return err
}
}
*dst = CIDRArray{
Elements: elements,
Dimensions: []ArrayDimension{{Length: int32(len(elements)), LowerBound: 1}},
Valid: true,
}
}
case []*net.IP:
if value == nil {
*dst = CIDRArray{}
} else if len(value) == 0 {
*dst = CIDRArray{Valid: true}
} else {
elements := make([]CIDR, len(value))
for i := range value {
if err := elements[i].Set(value[i]); err != nil {
return err
}
}
*dst = CIDRArray{
Elements: elements,
Dimensions: []ArrayDimension{{Length: int32(len(elements)), LowerBound: 1}},
Valid: true,
}
}
case []CIDR:
if value == nil {
*dst = CIDRArray{}
} else if len(value) == 0 {
*dst = CIDRArray{Valid: true}
} else {
*dst = CIDRArray{
Elements: value,
Dimensions: []ArrayDimension{{Length: int32(len(value)), LowerBound: 1}},
Valid: true,
}
}
default:
// Fallback to reflection if an optimised match was not found.
// The reflection is necessary for arrays and multidimensional slices,
// but it comes with a 20-50% performance penalty for large arrays/slices
reflectedValue := reflect.ValueOf(src)
if !reflectedValue.IsValid() || reflectedValue.IsZero() {
*dst = CIDRArray{}
return nil
}
dimensions, elementsLength, ok := findDimensionsFromValue(reflectedValue, nil, 0)
if !ok {
return fmt.Errorf("cannot find dimensions of %v for CIDRArray", src)
}
if elementsLength == 0 {
*dst = CIDRArray{Valid: true}
return nil
}
if len(dimensions) == 0 {
if originalSrc, ok := underlyingSliceType(src); ok {
return dst.Set(originalSrc)
}
return fmt.Errorf("cannot convert %v to CIDRArray", src)
}
*dst = CIDRArray{
Elements: make([]CIDR, elementsLength),
Dimensions: dimensions,
Valid: true,
}
elementCount, err := dst.setRecursive(reflectedValue, 0, 0)
if err != nil {
// Maybe the target was one dimension too far, try again:
if len(dst.Dimensions) > 1 {
dst.Dimensions = dst.Dimensions[:len(dst.Dimensions)-1]
elementsLength = 0
for _, dim := range dst.Dimensions {
if elementsLength == 0 {
elementsLength = int(dim.Length)
} else {
elementsLength *= int(dim.Length)
}
}
dst.Elements = make([]CIDR, elementsLength)
elementCount, err = dst.setRecursive(reflectedValue, 0, 0)
if err != nil {
return err
}
} else {
return err
}
}
if elementCount != len(dst.Elements) {
return fmt.Errorf("cannot convert %v to CIDRArray, expected %d dst.Elements, but got %d instead", src, len(dst.Elements), elementCount)
}
}
return nil
}
func (dst *CIDRArray) setRecursive(value reflect.Value, index, dimension int) (int, error) {
switch value.Kind() {
case reflect.Array:
fallthrough
case reflect.Slice:
if len(dst.Dimensions) == dimension {
break
}
valueLen := value.Len()
if int32(valueLen) != dst.Dimensions[dimension].Length {
return 0, fmt.Errorf("multidimensional arrays must have array expressions with matching dimensions")
}
for i := 0; i < valueLen; i++ {
var err error
index, err = dst.setRecursive(value.Index(i), index, dimension+1)
if err != nil {
return 0, err
}
}
return index, nil
}
if !value.CanInterface() {
return 0, fmt.Errorf("cannot convert all values to CIDRArray")
}
if err := dst.Elements[index].Set(value.Interface()); err != nil {
return 0, fmt.Errorf("%v in CIDRArray", err)
}
index++
return index, nil
}
func (dst CIDRArray) Get() interface{} {
if !dst.Valid {
return nil
}
return dst
}
func (src *CIDRArray) AssignTo(dst interface{}) error {
if !src.Valid {
return NullAssignTo(dst)
}
if len(src.Dimensions) <= 1 {
// Attempt to match to select common types:
switch v := dst.(type) {
case *[]*net.IPNet:
*v = make([]*net.IPNet, len(src.Elements))
for i := range src.Elements {
if err := src.Elements[i].AssignTo(&((*v)[i])); err != nil {
return err
}
}
return nil
case *[]net.IP:
*v = make([]net.IP, len(src.Elements))
for i := range src.Elements {
if err := src.Elements[i].AssignTo(&((*v)[i])); err != nil {
return err
}
}
return nil
case *[]*net.IP:
*v = make([]*net.IP, len(src.Elements))
for i := range src.Elements {
if err := src.Elements[i].AssignTo(&((*v)[i])); err != nil {
return err
}
}
return nil
}
}
// Try to convert to something AssignTo can use directly.
if nextDst, retry := GetAssignToDstType(dst); retry {
return src.AssignTo(nextDst)
}
// Fallback to reflection if an optimised match was not found.
// The reflection is necessary for arrays and multidimensional slices,
// but it comes with a 20-50% performance penalty for large arrays/slices
value := reflect.ValueOf(dst)
if value.Kind() == reflect.Ptr {
value = value.Elem()
}
switch value.Kind() {
case reflect.Array, reflect.Slice:
default:
return fmt.Errorf("cannot assign %T to %T", src, dst)
}
if len(src.Elements) == 0 {
if value.Kind() == reflect.Slice {
value.Set(reflect.MakeSlice(value.Type(), 0, 0))
return nil
}
}
elementCount, err := src.assignToRecursive(value, 0, 0)
if err != nil {
return err
}
if elementCount != len(src.Elements) {
return fmt.Errorf("cannot assign %v, needed to assign %d elements, but only assigned %d", dst, len(src.Elements), elementCount)
}
return nil
}
func (src *CIDRArray) assignToRecursive(value reflect.Value, index, dimension int) (int, error) {
switch kind := value.Kind(); kind {
case reflect.Array:
fallthrough
case reflect.Slice:
if len(src.Dimensions) == dimension {
break
}
length := int(src.Dimensions[dimension].Length)
if reflect.Array == kind {
typ := value.Type()
if typ.Len() != length {
return 0, fmt.Errorf("expected size %d array, but %s has size %d array", length, typ, typ.Len())
}
value.Set(reflect.New(typ).Elem())
} else {
value.Set(reflect.MakeSlice(value.Type(), length, length))
}
var err error
for i := 0; i < length; i++ {
index, err = src.assignToRecursive(value.Index(i), index, dimension+1)
if err != nil {
return 0, err
}
}
return index, nil
}
if len(src.Dimensions) != dimension {
return 0, fmt.Errorf("incorrect dimensions, expected %d, found %d", len(src.Dimensions), dimension)
}
if !value.CanAddr() {
return 0, fmt.Errorf("cannot assign all values from CIDRArray")
}
addr := value.Addr()
if !addr.CanInterface() {
return 0, fmt.Errorf("cannot assign all values from CIDRArray")
}
if err := src.Elements[index].AssignTo(addr.Interface()); err != nil {
return 0, err
}
index++
return index, nil
}
func (dst *CIDRArray) DecodeText(ci *ConnInfo, src []byte) error {
if src == nil {
*dst = CIDRArray{}
return nil
}
uta, err := ParseUntypedTextArray(string(src))
if err != nil {
return err
}
var elements []CIDR
if len(uta.Elements) > 0 {
elements = make([]CIDR, len(uta.Elements))
for i, s := range uta.Elements {
var elem CIDR
var elemSrc []byte
if s != "NULL" || uta.Quoted[i] {
elemSrc = []byte(s)
}
err = elem.DecodeText(ci, elemSrc)
if err != nil {
return err
}
elements[i] = elem
}
}
*dst = CIDRArray{Elements: elements, Dimensions: uta.Dimensions, Valid: true}
return nil
}
func (dst *CIDRArray) DecodeBinary(ci *ConnInfo, src []byte) error {
if src == nil {
*dst = CIDRArray{}
return nil
}
var arrayHeader ArrayHeader
rp, err := arrayHeader.DecodeBinary(ci, src)
if err != nil {
return err
}
if len(arrayHeader.Dimensions) == 0 {
*dst = CIDRArray{Dimensions: arrayHeader.Dimensions, Valid: true}
return nil
}
elementCount := arrayHeader.Dimensions[0].Length
for _, d := range arrayHeader.Dimensions[1:] {
elementCount *= d.Length
}
elements := make([]CIDR, elementCount)
for i := range elements {
elemLen := int(int32(binary.BigEndian.Uint32(src[rp:])))
rp += 4
var elemSrc []byte
if elemLen >= 0 {
elemSrc = src[rp : rp+elemLen]
rp += elemLen
}
err = elements[i].DecodeBinary(ci, elemSrc)
if err != nil {
return err
}
}
*dst = CIDRArray{Elements: elements, Dimensions: arrayHeader.Dimensions, Valid: true}
return nil
}
func (src CIDRArray) EncodeText(ci *ConnInfo, buf []byte) ([]byte, error) {
if !src.Valid {
return nil, nil
}
if len(src.Dimensions) == 0 {
return append(buf, '{', '}'), nil
}
buf = EncodeTextArrayDimensions(buf, src.Dimensions)
// dimElemCounts is the multiples of elements that each array lies on. For
// example, a single dimension array of length 4 would have a dimElemCounts of
// [4]. A multi-dimensional array of lengths [3,5,2] would have a
// dimElemCounts of [30,10,2]. This is used to simplify when to render a '{'
// or '}'.
dimElemCounts := make([]int, len(src.Dimensions))
dimElemCounts[len(src.Dimensions)-1] = int(src.Dimensions[len(src.Dimensions)-1].Length)
for i := len(src.Dimensions) - 2; i > -1; i-- {
dimElemCounts[i] = int(src.Dimensions[i].Length) * dimElemCounts[i+1]
}
inElemBuf := make([]byte, 0, 32)
for i, elem := range src.Elements {
if i > 0 {
buf = append(buf, ',')
}
for _, dec := range dimElemCounts {
if i%dec == 0 {
buf = append(buf, '{')
}
}
elemBuf, err := elem.EncodeText(ci, inElemBuf)
if err != nil {
return nil, err
}
if elemBuf == nil {
buf = append(buf, `NULL`...)
} else {
buf = append(buf, QuoteArrayElementIfNeeded(string(elemBuf))...)
}
for _, dec := range dimElemCounts {
if (i+1)%dec == 0 {
buf = append(buf, '}')
}
}
}
return buf, nil
}
func (src CIDRArray) EncodeBinary(ci *ConnInfo, buf []byte) ([]byte, error) {
if !src.Valid {
return nil, nil
}
arrayHeader := ArrayHeader{
Dimensions: src.Dimensions,
}
if dt, ok := ci.DataTypeForName("cidr"); ok {
arrayHeader.ElementOID = int32(dt.OID)
} else {
return nil, fmt.Errorf("unable to find oid for type name %v", "cidr")
}
for i := range src.Elements {
if !src.Elements[i].Valid {
arrayHeader.ContainsNull = true
break
}
}
buf = arrayHeader.EncodeBinary(ci, buf)
for i := range src.Elements {
sp := len(buf)
buf = pgio.AppendInt32(buf, -1)
elemBuf, err := src.Elements[i].EncodeBinary(ci, buf)
if err != nil {
return nil, err
}
if elemBuf != nil {
buf = elemBuf
pgio.SetInt32(buf[sp:], int32(len(buf[sp:])-4))
}
}
return buf, nil
}
// Scan implements the database/sql Scanner interface.
func (dst *CIDRArray) Scan(src interface{}) error {
if src == nil {
return dst.DecodeText(nil, nil)
}
switch src := src.(type) {
case string:
return dst.DecodeText(nil, []byte(src))
case []byte:
srcCopy := make([]byte, len(src))
copy(srcCopy, src)
return dst.DecodeText(nil, srcCopy)
}
return fmt.Errorf("cannot scan %T", src)
}
// Value implements the database/sql/driver Valuer interface.
func (src CIDRArray) Value() (driver.Value, error) {
buf, err := src.EncodeText(nil, nil)
if err != nil {
return nil, err
}
if buf == nil {
return nil, nil
}
return string(buf), nil
}

View File

@ -1,319 +0,0 @@
package pgtype_test
import (
"net"
"reflect"
"testing"
"github.com/jackc/pgx/v5/pgtype"
"github.com/jackc/pgx/v5/pgtype/testutil"
)
func TestCIDRArrayTranscode(t *testing.T) {
testutil.TestSuccessfulTranscode(t, "cidr[]", []interface{}{
&pgtype.CIDRArray{
Elements: nil,
Dimensions: nil,
Valid: true,
},
&pgtype.CIDRArray{
Elements: []pgtype.CIDR{
{IPNet: mustParseCIDR(t, "12.34.56.0/32"), Valid: true},
{},
},
Dimensions: []pgtype.ArrayDimension{{Length: 2, LowerBound: 1}},
Valid: true,
},
&pgtype.CIDRArray{},
&pgtype.CIDRArray{
Elements: []pgtype.CIDR{
{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true},
{IPNet: mustParseCIDR(t, "12.34.56.0/32"), Valid: true},
{IPNet: mustParseCIDR(t, "192.168.0.1/32"), Valid: true},
{IPNet: mustParseCIDR(t, "2607:f8b0:4009:80b::200e/128"), Valid: true},
{},
{IPNet: mustParseCIDR(t, "255.0.0.0/8"), Valid: true},
},
Dimensions: []pgtype.ArrayDimension{{Length: 3, LowerBound: 1}, {Length: 2, LowerBound: 1}},
Valid: true,
},
&pgtype.CIDRArray{
Elements: []pgtype.CIDR{
{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true},
{IPNet: mustParseCIDR(t, "12.34.56.0/32"), Valid: true},
{IPNet: mustParseCIDR(t, "192.168.0.1/32"), Valid: true},
{IPNet: mustParseCIDR(t, "2607:f8b0:4009:80b::200e/128"), Valid: true},
},
Dimensions: []pgtype.ArrayDimension{
{Length: 2, LowerBound: 4},
{Length: 2, LowerBound: 2},
},
Valid: true,
},
})
}
func TestCIDRArraySet(t *testing.T) {
successfulTests := []struct {
source interface{}
result pgtype.CIDRArray
}{
{
source: []*net.IPNet{mustParseCIDR(t, "127.0.0.1/32")},
result: pgtype.CIDRArray{
Elements: []pgtype.CIDR{{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 1}},
Valid: true},
},
{
source: (([]*net.IPNet)(nil)),
result: pgtype.CIDRArray{},
},
{
source: []net.IP{mustParseCIDR(t, "127.0.0.1/32").IP},
result: pgtype.CIDRArray{
Elements: []pgtype.CIDR{{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 1}},
Valid: true},
},
{
source: (([]net.IP)(nil)),
result: pgtype.CIDRArray{},
},
{
source: [][]net.IP{{mustParseCIDR(t, "127.0.0.1/32").IP}, {mustParseCIDR(t, "10.0.0.1/32").IP}},
result: pgtype.CIDRArray{
Elements: []pgtype.CIDR{
{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true},
{IPNet: mustParseCIDR(t, "10.0.0.1/32"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 2}, {LowerBound: 1, Length: 1}},
Valid: true},
},
{
source: [][][][]*net.IPNet{
{{{
mustParseCIDR(t, "127.0.0.1/24"),
mustParseCIDR(t, "10.0.0.1/24"),
mustParseCIDR(t, "172.16.0.1/16")}}},
{{{
mustParseCIDR(t, "192.168.0.1/16"),
mustParseCIDR(t, "224.0.0.1/24"),
mustParseCIDR(t, "169.168.0.1/16")}}}},
result: pgtype.CIDRArray{
Elements: []pgtype.CIDR{
{IPNet: mustParseCIDR(t, "127.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "10.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "172.16.0.1/16"), Valid: true},
{IPNet: mustParseCIDR(t, "192.168.0.1/16"), Valid: true},
{IPNet: mustParseCIDR(t, "224.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "169.168.0.1/16"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{
{LowerBound: 1, Length: 2},
{LowerBound: 1, Length: 1},
{LowerBound: 1, Length: 1},
{LowerBound: 1, Length: 3}},
Valid: true},
},
{
source: [2][1]net.IP{{mustParseCIDR(t, "127.0.0.1/32").IP}, {mustParseCIDR(t, "10.0.0.1/32").IP}},
result: pgtype.CIDRArray{
Elements: []pgtype.CIDR{
{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true},
{IPNet: mustParseCIDR(t, "10.0.0.1/32"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 2}, {LowerBound: 1, Length: 1}},
Valid: true},
},
{
source: [2][1][1][3]*net.IPNet{
{{{
mustParseCIDR(t, "127.0.0.1/24"),
mustParseCIDR(t, "10.0.0.1/24"),
mustParseCIDR(t, "172.16.0.1/16")}}},
{{{
mustParseCIDR(t, "192.168.0.1/16"),
mustParseCIDR(t, "224.0.0.1/24"),
mustParseCIDR(t, "169.168.0.1/16")}}}},
result: pgtype.CIDRArray{
Elements: []pgtype.CIDR{
{IPNet: mustParseCIDR(t, "127.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "10.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "172.16.0.1/16"), Valid: true},
{IPNet: mustParseCIDR(t, "192.168.0.1/16"), Valid: true},
{IPNet: mustParseCIDR(t, "224.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "169.168.0.1/16"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{
{LowerBound: 1, Length: 2},
{LowerBound: 1, Length: 1},
{LowerBound: 1, Length: 1},
{LowerBound: 1, Length: 3}},
Valid: true},
},
}
for i, tt := range successfulTests {
var r pgtype.CIDRArray
err := r.Set(tt.source)
if err != nil {
t.Errorf("%d: %v", i, err)
}
if !reflect.DeepEqual(r, tt.result) {
t.Errorf("%d: expected %v to convert to %v, but it was %v", i, tt.source, tt.result, r)
}
}
}
func TestCIDRArrayAssignTo(t *testing.T) {
var ipnetSlice []*net.IPNet
var ipSlice []net.IP
var ipSliceDim2 [][]net.IP
var ipnetSliceDim4 [][][][]*net.IPNet
var ipArrayDim2 [2][1]net.IP
var ipnetArrayDim4 [2][1][1][3]*net.IPNet
simpleTests := []struct {
src pgtype.CIDRArray
dst interface{}
expected interface{}
}{
{
src: pgtype.CIDRArray{
Elements: []pgtype.CIDR{{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 1}},
Valid: true,
},
dst: &ipnetSlice,
expected: []*net.IPNet{mustParseCIDR(t, "127.0.0.1/32")},
},
{
src: pgtype.CIDRArray{
Elements: []pgtype.CIDR{{}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 1}},
Valid: true,
},
dst: &ipnetSlice,
expected: []*net.IPNet{nil},
},
{
src: pgtype.CIDRArray{
Elements: []pgtype.CIDR{{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 1}},
Valid: true,
},
dst: &ipSlice,
expected: []net.IP{mustParseCIDR(t, "127.0.0.1/32").IP},
},
{
src: pgtype.CIDRArray{
Elements: []pgtype.CIDR{{}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 1}},
Valid: true,
},
dst: &ipSlice,
expected: []net.IP{nil},
},
{
src: pgtype.CIDRArray{},
dst: &ipnetSlice,
expected: (([]*net.IPNet)(nil)),
},
{
src: pgtype.CIDRArray{Valid: true},
dst: &ipnetSlice,
expected: []*net.IPNet{},
},
{
src: pgtype.CIDRArray{},
dst: &ipSlice,
expected: (([]net.IP)(nil)),
},
{
src: pgtype.CIDRArray{Valid: true},
dst: &ipSlice,
expected: []net.IP{},
},
{
src: pgtype.CIDRArray{
Elements: []pgtype.CIDR{
{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true},
{IPNet: mustParseCIDR(t, "10.0.0.1/32"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 2}, {LowerBound: 1, Length: 1}},
Valid: true},
dst: &ipSliceDim2,
expected: [][]net.IP{{mustParseCIDR(t, "127.0.0.1/32").IP}, {mustParseCIDR(t, "10.0.0.1/32").IP}},
},
{
src: pgtype.CIDRArray{
Elements: []pgtype.CIDR{
{IPNet: mustParseCIDR(t, "127.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "10.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "172.16.0.1/16"), Valid: true},
{IPNet: mustParseCIDR(t, "192.168.0.1/16"), Valid: true},
{IPNet: mustParseCIDR(t, "224.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "169.168.0.1/16"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{
{LowerBound: 1, Length: 2},
{LowerBound: 1, Length: 1},
{LowerBound: 1, Length: 1},
{LowerBound: 1, Length: 3}},
Valid: true},
dst: &ipnetSliceDim4,
expected: [][][][]*net.IPNet{
{{{
mustParseCIDR(t, "127.0.0.1/24"),
mustParseCIDR(t, "10.0.0.1/24"),
mustParseCIDR(t, "172.16.0.1/16")}}},
{{{
mustParseCIDR(t, "192.168.0.1/16"),
mustParseCIDR(t, "224.0.0.1/24"),
mustParseCIDR(t, "169.168.0.1/16")}}}},
},
{
src: pgtype.CIDRArray{
Elements: []pgtype.CIDR{
{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true},
{IPNet: mustParseCIDR(t, "10.0.0.1/32"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 2}, {LowerBound: 1, Length: 1}},
Valid: true},
dst: &ipArrayDim2,
expected: [2][1]net.IP{{mustParseCIDR(t, "127.0.0.1/32").IP}, {mustParseCIDR(t, "10.0.0.1/32").IP}},
},
{
src: pgtype.CIDRArray{
Elements: []pgtype.CIDR{
{IPNet: mustParseCIDR(t, "127.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "10.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "172.16.0.1/16"), Valid: true},
{IPNet: mustParseCIDR(t, "192.168.0.1/16"), Valid: true},
{IPNet: mustParseCIDR(t, "224.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "169.168.0.1/16"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{
{LowerBound: 1, Length: 2},
{LowerBound: 1, Length: 1},
{LowerBound: 1, Length: 1},
{LowerBound: 1, Length: 3}},
Valid: true},
dst: &ipnetArrayDim4,
expected: [2][1][1][3]*net.IPNet{
{{{
mustParseCIDR(t, "127.0.0.1/24"),
mustParseCIDR(t, "10.0.0.1/24"),
mustParseCIDR(t, "172.16.0.1/16")}}},
{{{
mustParseCIDR(t, "192.168.0.1/16"),
mustParseCIDR(t, "224.0.0.1/24"),
mustParseCIDR(t, "169.168.0.1/16")}}}},
},
}
for i, tt := range simpleTests {
err := tt.src.AssignTo(tt.dst)
if err != nil {
t.Errorf("%d: %v", i, err)
}
if dst := reflect.ValueOf(tt.dst).Elem().Interface(); !reflect.DeepEqual(dst, tt.expected) {
t.Errorf("%d: expected %v to assign %v, but result was %v", i, tt.src, tt.expected, dst)
}
}
}

View File

@ -14,119 +14,208 @@ const (
defaultAFInet6 = 3
)
type InetScanner interface {
ScanInet(v Inet) error
}
type InetValuer interface {
InetValue() (Inet, error)
}
// Inet represents both inet and cidr PostgreSQL types.
type Inet struct {
IPNet *net.IPNet
Valid bool
}
func (dst *Inet) Set(src interface{}) error {
func (inet *Inet) ScanInet(v Inet) error {
*inet = v
return nil
}
func (inet Inet) InetValue() (Inet, error) {
return inet, nil
}
// Scan implements the database/sql Scanner interface.
func (dst *Inet) Scan(src interface{}) error {
if src == nil {
*dst = Inet{}
return nil
}
if value, ok := src.(interface{ Get() interface{} }); ok {
value2 := value.Get()
if value2 != value {
return dst.Set(value2)
}
switch src := src.(type) {
case string:
return scanPlanTextAnyToInetScanner{}.Scan(nil, 0, TextFormatCode, []byte(src), dst)
}
switch value := src.(type) {
case net.IPNet:
*dst = Inet{IPNet: &value, Valid: true}
case net.IP:
if len(value) == 0 {
*dst = Inet{}
} else {
bitCount := len(value) * 8
mask := net.CIDRMask(bitCount, bitCount)
*dst = Inet{IPNet: &net.IPNet{Mask: mask, IP: value}, Valid: true}
}
case string:
ip, ipnet, err := net.ParseCIDR(value)
if err != nil {
ip = net.ParseIP(value)
if ip == nil {
return fmt.Errorf("unable to parse inet address: %s", value)
}
ipnet = &net.IPNet{IP: ip, Mask: net.CIDRMask(128, 128)}
if ipv4 := ip.To4(); ipv4 != nil {
ip = ipv4
ipnet.Mask = net.CIDRMask(32, 32)
}
}
ipnet.IP = ip
*dst = Inet{IPNet: ipnet, Valid: true}
case *net.IPNet:
if value == nil {
*dst = Inet{}
} else {
return dst.Set(*value)
}
case *net.IP:
if value == nil {
*dst = Inet{}
} else {
return dst.Set(*value)
}
case *string:
if value == nil {
*dst = Inet{}
} else {
return dst.Set(*value)
}
default:
if originalSrc, ok := underlyingPtrType(src); ok {
return dst.Set(originalSrc)
}
return fmt.Errorf("cannot convert %v to Inet", value)
return fmt.Errorf("cannot scan %T", src)
}
// Value implements the database/sql/driver Valuer interface.
func (src Inet) Value() (driver.Value, error) {
if !src.Valid {
return nil, nil
}
buf, err := InetCodec{}.PlanEncode(nil, 0, TextFormatCode, src).Encode(src, nil)
if err != nil {
return nil, err
}
return string(buf), err
}
type InetCodec struct{}
func (InetCodec) FormatSupported(format int16) bool {
return format == TextFormatCode || format == BinaryFormatCode
}
func (InetCodec) PreferredFormat() int16 {
return BinaryFormatCode
}
func (InetCodec) PlanEncode(ci *ConnInfo, oid uint32, format int16, value interface{}) EncodePlan {
if _, ok := value.(InetValuer); !ok {
return nil
}
switch format {
case BinaryFormatCode:
return encodePlanInetCodecBinary{}
case TextFormatCode:
return encodePlanInetCodecText{}
}
return nil
}
func (dst Inet) Get() interface{} {
if !dst.Valid {
return nil
}
return dst.IPNet
}
type encodePlanInetCodecBinary struct{}
func (src *Inet) AssignTo(dst interface{}) error {
if !src.Valid {
return NullAssignTo(dst)
func (encodePlanInetCodecBinary) Encode(value interface{}, buf []byte) (newBuf []byte, err error) {
inet, err := value.(InetValuer).InetValue()
if err != nil {
return nil, err
}
switch v := dst.(type) {
case *net.IPNet:
*v = net.IPNet{
IP: make(net.IP, len(src.IPNet.IP)),
Mask: make(net.IPMask, len(src.IPNet.Mask)),
}
copy(v.IP, src.IPNet.IP)
copy(v.Mask, src.IPNet.Mask)
return nil
case *net.IP:
if oneCount, bitCount := src.IPNet.Mask.Size(); oneCount != bitCount {
return fmt.Errorf("cannot assign %v to %T", src, dst)
}
*v = make(net.IP, len(src.IPNet.IP))
copy(*v, src.IPNet.IP)
return nil
if !inet.Valid {
return nil, nil
}
var family byte
switch len(inet.IPNet.IP) {
case net.IPv4len:
family = defaultAFInet
case net.IPv6len:
family = defaultAFInet6
default:
if nextDst, retry := GetAssignToDstType(dst); retry {
return src.AssignTo(nextDst)
}
return fmt.Errorf("unable to assign to %T", dst)
return nil, fmt.Errorf("Unexpected IP length: %v", len(inet.IPNet.IP))
}
buf = append(buf, family)
ones, _ := inet.IPNet.Mask.Size()
buf = append(buf, byte(ones))
// is_cidr is ignored on server
buf = append(buf, 0)
buf = append(buf, byte(len(inet.IPNet.IP)))
return append(buf, inet.IPNet.IP...), nil
}
func (dst *Inet) DecodeText(ci *ConnInfo, src []byte) error {
type encodePlanInetCodecText struct{}
func (encodePlanInetCodecText) Encode(value interface{}, buf []byte) (newBuf []byte, err error) {
inet, err := value.(InetValuer).InetValue()
if err != nil {
return nil, err
}
if !inet.Valid {
return nil, nil
}
return append(buf, inet.IPNet.String()...), nil
}
func (InetCodec) PlanScan(ci *ConnInfo, oid uint32, format int16, target interface{}, actualTarget bool) ScanPlan {
switch format {
case BinaryFormatCode:
switch target.(type) {
case InetScanner:
return scanPlanBinaryInetToInetScanner{}
}
case TextFormatCode:
switch target.(type) {
case InetScanner:
return scanPlanTextAnyToInetScanner{}
}
}
return nil
}
func (c InetCodec) DecodeDatabaseSQLValue(ci *ConnInfo, oid uint32, format int16, src []byte) (driver.Value, error) {
return codecDecodeToTextFormat(c, ci, oid, format, src)
}
func (c InetCodec) DecodeValue(ci *ConnInfo, oid uint32, format int16, src []byte) (interface{}, error) {
if src == nil {
*dst = Inet{}
return nil
return nil, nil
}
var inet Inet
err := codecScan(c, ci, oid, format, src, &inet)
if err != nil {
return nil, err
}
if !inet.Valid {
return nil, nil
}
return inet.IPNet, nil
}
type scanPlanBinaryInetToInetScanner struct{}
func (scanPlanBinaryInetToInetScanner) Scan(ci *ConnInfo, oid uint32, formatCode int16, src []byte, dst interface{}) error {
scanner := (dst).(InetScanner)
if src == nil {
return scanner.ScanInet(Inet{})
}
if len(src) != 8 && len(src) != 20 {
return fmt.Errorf("Received an invalid size for a inet: %d", len(src))
}
// ignore family
bits := src[1]
// ignore is_cidr
addressLength := src[3]
var ipnet net.IPNet
ipnet.IP = make(net.IP, int(addressLength))
copy(ipnet.IP, src[4:])
if ipv4 := ipnet.IP.To4(); ipv4 != nil {
ipnet.IP = ipv4
}
ipnet.Mask = net.CIDRMask(int(bits), len(ipnet.IP)*8)
return scanner.ScanInet(Inet{IPNet: &ipnet, Valid: true})
}
type scanPlanTextAnyToInetScanner struct{}
func (scanPlanTextAnyToInetScanner) Scan(ci *ConnInfo, oid uint32, formatCode int16, src []byte, dst interface{}) error {
scanner := (dst).(InetScanner)
if src == nil {
return scanner.ScanInet(Inet{})
}
var ipnet *net.IPNet
@ -151,95 +240,5 @@ func (dst *Inet) DecodeText(ci *ConnInfo, src []byte) error {
*ipnet = net.IPNet{IP: ip, Mask: net.CIDRMask(ones, len(ip)*8)}
}
*dst = Inet{IPNet: ipnet, Valid: true}
return nil
}
func (dst *Inet) DecodeBinary(ci *ConnInfo, src []byte) error {
if src == nil {
*dst = Inet{}
return nil
}
if len(src) != 8 && len(src) != 20 {
return fmt.Errorf("Received an invalid size for a inet: %d", len(src))
}
// ignore family
bits := src[1]
// ignore is_cidr
addressLength := src[3]
var ipnet net.IPNet
ipnet.IP = make(net.IP, int(addressLength))
copy(ipnet.IP, src[4:])
if ipv4 := ipnet.IP.To4(); ipv4 != nil {
ipnet.IP = ipv4
}
ipnet.Mask = net.CIDRMask(int(bits), len(ipnet.IP)*8)
*dst = Inet{IPNet: &ipnet, Valid: true}
return nil
}
func (src Inet) EncodeText(ci *ConnInfo, buf []byte) ([]byte, error) {
if !src.Valid {
return nil, nil
}
return append(buf, src.IPNet.String()...), nil
}
// EncodeBinary encodes src into w.
func (src Inet) EncodeBinary(ci *ConnInfo, buf []byte) ([]byte, error) {
if !src.Valid {
return nil, nil
}
var family byte
switch len(src.IPNet.IP) {
case net.IPv4len:
family = defaultAFInet
case net.IPv6len:
family = defaultAFInet6
default:
return nil, fmt.Errorf("Unexpected IP length: %v", len(src.IPNet.IP))
}
buf = append(buf, family)
ones, _ := src.IPNet.Mask.Size()
buf = append(buf, byte(ones))
// is_cidr is ignored on server
buf = append(buf, 0)
buf = append(buf, byte(len(src.IPNet.IP)))
return append(buf, src.IPNet.IP...), nil
}
// Scan implements the database/sql Scanner interface.
func (dst *Inet) Scan(src interface{}) error {
if src == nil {
*dst = Inet{}
return nil
}
switch src := src.(type) {
case string:
return dst.DecodeText(nil, []byte(src))
case []byte:
srcCopy := make([]byte, len(src))
copy(srcCopy, src)
return dst.DecodeText(nil, srcCopy)
}
return fmt.Errorf("cannot scan %T", src)
}
// Value implements the database/sql/driver Valuer interface.
func (src Inet) Value() (driver.Value, error) {
return EncodeValueText(src)
return scanner.ScanInet(Inet{IPNet: ipnet, Valid: true})
}

View File

@ -1,533 +0,0 @@
// Code generated by erb. DO NOT EDIT.
package pgtype
import (
"database/sql/driver"
"encoding/binary"
"fmt"
"net"
"reflect"
"github.com/jackc/pgio"
)
type InetArray struct {
Elements []Inet
Dimensions []ArrayDimension
Valid bool
}
func (dst *InetArray) Set(src interface{}) error {
// untyped nil and typed nil interfaces are different
if src == nil {
*dst = InetArray{}
return nil
}
if value, ok := src.(interface{ Get() interface{} }); ok {
value2 := value.Get()
if value2 != value {
return dst.Set(value2)
}
}
// Attempt to match to select common types:
switch value := src.(type) {
case []*net.IPNet:
if value == nil {
*dst = InetArray{}
} else if len(value) == 0 {
*dst = InetArray{Valid: true}
} else {
elements := make([]Inet, len(value))
for i := range value {
if err := elements[i].Set(value[i]); err != nil {
return err
}
}
*dst = InetArray{
Elements: elements,
Dimensions: []ArrayDimension{{Length: int32(len(elements)), LowerBound: 1}},
Valid: true,
}
}
case []net.IP:
if value == nil {
*dst = InetArray{}
} else if len(value) == 0 {
*dst = InetArray{Valid: true}
} else {
elements := make([]Inet, len(value))
for i := range value {
if err := elements[i].Set(value[i]); err != nil {
return err
}
}
*dst = InetArray{
Elements: elements,
Dimensions: []ArrayDimension{{Length: int32(len(elements)), LowerBound: 1}},
Valid: true,
}
}
case []*net.IP:
if value == nil {
*dst = InetArray{}
} else if len(value) == 0 {
*dst = InetArray{Valid: true}
} else {
elements := make([]Inet, len(value))
for i := range value {
if err := elements[i].Set(value[i]); err != nil {
return err
}
}
*dst = InetArray{
Elements: elements,
Dimensions: []ArrayDimension{{Length: int32(len(elements)), LowerBound: 1}},
Valid: true,
}
}
case []Inet:
if value == nil {
*dst = InetArray{}
} else if len(value) == 0 {
*dst = InetArray{Valid: true}
} else {
*dst = InetArray{
Elements: value,
Dimensions: []ArrayDimension{{Length: int32(len(value)), LowerBound: 1}},
Valid: true,
}
}
default:
// Fallback to reflection if an optimised match was not found.
// The reflection is necessary for arrays and multidimensional slices,
// but it comes with a 20-50% performance penalty for large arrays/slices
reflectedValue := reflect.ValueOf(src)
if !reflectedValue.IsValid() || reflectedValue.IsZero() {
*dst = InetArray{}
return nil
}
dimensions, elementsLength, ok := findDimensionsFromValue(reflectedValue, nil, 0)
if !ok {
return fmt.Errorf("cannot find dimensions of %v for InetArray", src)
}
if elementsLength == 0 {
*dst = InetArray{Valid: true}
return nil
}
if len(dimensions) == 0 {
if originalSrc, ok := underlyingSliceType(src); ok {
return dst.Set(originalSrc)
}
return fmt.Errorf("cannot convert %v to InetArray", src)
}
*dst = InetArray{
Elements: make([]Inet, elementsLength),
Dimensions: dimensions,
Valid: true,
}
elementCount, err := dst.setRecursive(reflectedValue, 0, 0)
if err != nil {
// Maybe the target was one dimension too far, try again:
if len(dst.Dimensions) > 1 {
dst.Dimensions = dst.Dimensions[:len(dst.Dimensions)-1]
elementsLength = 0
for _, dim := range dst.Dimensions {
if elementsLength == 0 {
elementsLength = int(dim.Length)
} else {
elementsLength *= int(dim.Length)
}
}
dst.Elements = make([]Inet, elementsLength)
elementCount, err = dst.setRecursive(reflectedValue, 0, 0)
if err != nil {
return err
}
} else {
return err
}
}
if elementCount != len(dst.Elements) {
return fmt.Errorf("cannot convert %v to InetArray, expected %d dst.Elements, but got %d instead", src, len(dst.Elements), elementCount)
}
}
return nil
}
func (dst *InetArray) setRecursive(value reflect.Value, index, dimension int) (int, error) {
switch value.Kind() {
case reflect.Array:
fallthrough
case reflect.Slice:
if len(dst.Dimensions) == dimension {
break
}
valueLen := value.Len()
if int32(valueLen) != dst.Dimensions[dimension].Length {
return 0, fmt.Errorf("multidimensional arrays must have array expressions with matching dimensions")
}
for i := 0; i < valueLen; i++ {
var err error
index, err = dst.setRecursive(value.Index(i), index, dimension+1)
if err != nil {
return 0, err
}
}
return index, nil
}
if !value.CanInterface() {
return 0, fmt.Errorf("cannot convert all values to InetArray")
}
if err := dst.Elements[index].Set(value.Interface()); err != nil {
return 0, fmt.Errorf("%v in InetArray", err)
}
index++
return index, nil
}
func (dst InetArray) Get() interface{} {
if !dst.Valid {
return nil
}
return dst
}
func (src *InetArray) AssignTo(dst interface{}) error {
if !src.Valid {
return NullAssignTo(dst)
}
if len(src.Dimensions) <= 1 {
// Attempt to match to select common types:
switch v := dst.(type) {
case *[]*net.IPNet:
*v = make([]*net.IPNet, len(src.Elements))
for i := range src.Elements {
if err := src.Elements[i].AssignTo(&((*v)[i])); err != nil {
return err
}
}
return nil
case *[]net.IP:
*v = make([]net.IP, len(src.Elements))
for i := range src.Elements {
if err := src.Elements[i].AssignTo(&((*v)[i])); err != nil {
return err
}
}
return nil
case *[]*net.IP:
*v = make([]*net.IP, len(src.Elements))
for i := range src.Elements {
if err := src.Elements[i].AssignTo(&((*v)[i])); err != nil {
return err
}
}
return nil
}
}
// Try to convert to something AssignTo can use directly.
if nextDst, retry := GetAssignToDstType(dst); retry {
return src.AssignTo(nextDst)
}
// Fallback to reflection if an optimised match was not found.
// The reflection is necessary for arrays and multidimensional slices,
// but it comes with a 20-50% performance penalty for large arrays/slices
value := reflect.ValueOf(dst)
if value.Kind() == reflect.Ptr {
value = value.Elem()
}
switch value.Kind() {
case reflect.Array, reflect.Slice:
default:
return fmt.Errorf("cannot assign %T to %T", src, dst)
}
if len(src.Elements) == 0 {
if value.Kind() == reflect.Slice {
value.Set(reflect.MakeSlice(value.Type(), 0, 0))
return nil
}
}
elementCount, err := src.assignToRecursive(value, 0, 0)
if err != nil {
return err
}
if elementCount != len(src.Elements) {
return fmt.Errorf("cannot assign %v, needed to assign %d elements, but only assigned %d", dst, len(src.Elements), elementCount)
}
return nil
}
func (src *InetArray) assignToRecursive(value reflect.Value, index, dimension int) (int, error) {
switch kind := value.Kind(); kind {
case reflect.Array:
fallthrough
case reflect.Slice:
if len(src.Dimensions) == dimension {
break
}
length := int(src.Dimensions[dimension].Length)
if reflect.Array == kind {
typ := value.Type()
if typ.Len() != length {
return 0, fmt.Errorf("expected size %d array, but %s has size %d array", length, typ, typ.Len())
}
value.Set(reflect.New(typ).Elem())
} else {
value.Set(reflect.MakeSlice(value.Type(), length, length))
}
var err error
for i := 0; i < length; i++ {
index, err = src.assignToRecursive(value.Index(i), index, dimension+1)
if err != nil {
return 0, err
}
}
return index, nil
}
if len(src.Dimensions) != dimension {
return 0, fmt.Errorf("incorrect dimensions, expected %d, found %d", len(src.Dimensions), dimension)
}
if !value.CanAddr() {
return 0, fmt.Errorf("cannot assign all values from InetArray")
}
addr := value.Addr()
if !addr.CanInterface() {
return 0, fmt.Errorf("cannot assign all values from InetArray")
}
if err := src.Elements[index].AssignTo(addr.Interface()); err != nil {
return 0, err
}
index++
return index, nil
}
func (dst *InetArray) DecodeText(ci *ConnInfo, src []byte) error {
if src == nil {
*dst = InetArray{}
return nil
}
uta, err := ParseUntypedTextArray(string(src))
if err != nil {
return err
}
var elements []Inet
if len(uta.Elements) > 0 {
elements = make([]Inet, len(uta.Elements))
for i, s := range uta.Elements {
var elem Inet
var elemSrc []byte
if s != "NULL" || uta.Quoted[i] {
elemSrc = []byte(s)
}
err = elem.DecodeText(ci, elemSrc)
if err != nil {
return err
}
elements[i] = elem
}
}
*dst = InetArray{Elements: elements, Dimensions: uta.Dimensions, Valid: true}
return nil
}
func (dst *InetArray) DecodeBinary(ci *ConnInfo, src []byte) error {
if src == nil {
*dst = InetArray{}
return nil
}
var arrayHeader ArrayHeader
rp, err := arrayHeader.DecodeBinary(ci, src)
if err != nil {
return err
}
if len(arrayHeader.Dimensions) == 0 {
*dst = InetArray{Dimensions: arrayHeader.Dimensions, Valid: true}
return nil
}
elementCount := arrayHeader.Dimensions[0].Length
for _, d := range arrayHeader.Dimensions[1:] {
elementCount *= d.Length
}
elements := make([]Inet, elementCount)
for i := range elements {
elemLen := int(int32(binary.BigEndian.Uint32(src[rp:])))
rp += 4
var elemSrc []byte
if elemLen >= 0 {
elemSrc = src[rp : rp+elemLen]
rp += elemLen
}
err = elements[i].DecodeBinary(ci, elemSrc)
if err != nil {
return err
}
}
*dst = InetArray{Elements: elements, Dimensions: arrayHeader.Dimensions, Valid: true}
return nil
}
func (src InetArray) EncodeText(ci *ConnInfo, buf []byte) ([]byte, error) {
if !src.Valid {
return nil, nil
}
if len(src.Dimensions) == 0 {
return append(buf, '{', '}'), nil
}
buf = EncodeTextArrayDimensions(buf, src.Dimensions)
// dimElemCounts is the multiples of elements that each array lies on. For
// example, a single dimension array of length 4 would have a dimElemCounts of
// [4]. A multi-dimensional array of lengths [3,5,2] would have a
// dimElemCounts of [30,10,2]. This is used to simplify when to render a '{'
// or '}'.
dimElemCounts := make([]int, len(src.Dimensions))
dimElemCounts[len(src.Dimensions)-1] = int(src.Dimensions[len(src.Dimensions)-1].Length)
for i := len(src.Dimensions) - 2; i > -1; i-- {
dimElemCounts[i] = int(src.Dimensions[i].Length) * dimElemCounts[i+1]
}
inElemBuf := make([]byte, 0, 32)
for i, elem := range src.Elements {
if i > 0 {
buf = append(buf, ',')
}
for _, dec := range dimElemCounts {
if i%dec == 0 {
buf = append(buf, '{')
}
}
elemBuf, err := elem.EncodeText(ci, inElemBuf)
if err != nil {
return nil, err
}
if elemBuf == nil {
buf = append(buf, `NULL`...)
} else {
buf = append(buf, QuoteArrayElementIfNeeded(string(elemBuf))...)
}
for _, dec := range dimElemCounts {
if (i+1)%dec == 0 {
buf = append(buf, '}')
}
}
}
return buf, nil
}
func (src InetArray) EncodeBinary(ci *ConnInfo, buf []byte) ([]byte, error) {
if !src.Valid {
return nil, nil
}
arrayHeader := ArrayHeader{
Dimensions: src.Dimensions,
}
if dt, ok := ci.DataTypeForName("inet"); ok {
arrayHeader.ElementOID = int32(dt.OID)
} else {
return nil, fmt.Errorf("unable to find oid for type name %v", "inet")
}
for i := range src.Elements {
if !src.Elements[i].Valid {
arrayHeader.ContainsNull = true
break
}
}
buf = arrayHeader.EncodeBinary(ci, buf)
for i := range src.Elements {
sp := len(buf)
buf = pgio.AppendInt32(buf, -1)
elemBuf, err := src.Elements[i].EncodeBinary(ci, buf)
if err != nil {
return nil, err
}
if elemBuf != nil {
buf = elemBuf
pgio.SetInt32(buf[sp:], int32(len(buf[sp:])-4))
}
}
return buf, nil
}
// Scan implements the database/sql Scanner interface.
func (dst *InetArray) Scan(src interface{}) error {
if src == nil {
return dst.DecodeText(nil, nil)
}
switch src := src.(type) {
case string:
return dst.DecodeText(nil, []byte(src))
case []byte:
srcCopy := make([]byte, len(src))
copy(srcCopy, src)
return dst.DecodeText(nil, srcCopy)
}
return fmt.Errorf("cannot scan %T", src)
}
// Value implements the database/sql/driver Valuer interface.
func (src InetArray) Value() (driver.Value, error) {
buf, err := src.EncodeText(nil, nil)
if err != nil {
return nil, err
}
if buf == nil {
return nil, nil
}
return string(buf), nil
}

View File

@ -1,319 +0,0 @@
package pgtype_test
import (
"net"
"reflect"
"testing"
"github.com/jackc/pgx/v5/pgtype"
"github.com/jackc/pgx/v5/pgtype/testutil"
)
func TestInetArrayTranscode(t *testing.T) {
testutil.TestSuccessfulTranscode(t, "inet[]", []interface{}{
&pgtype.InetArray{
Elements: nil,
Dimensions: nil,
Valid: true,
},
&pgtype.InetArray{
Elements: []pgtype.Inet{
{IPNet: mustParseCIDR(t, "12.34.56.0/32"), Valid: true},
{},
},
Dimensions: []pgtype.ArrayDimension{{Length: 2, LowerBound: 1}},
Valid: true,
},
&pgtype.InetArray{},
&pgtype.InetArray{
Elements: []pgtype.Inet{
{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true},
{IPNet: mustParseCIDR(t, "12.34.56.0/32"), Valid: true},
{IPNet: mustParseCIDR(t, "192.168.0.1/32"), Valid: true},
{IPNet: mustParseCIDR(t, "2607:f8b0:4009:80b::200e/128"), Valid: true},
{},
{IPNet: mustParseCIDR(t, "255.0.0.0/8"), Valid: true},
},
Dimensions: []pgtype.ArrayDimension{{Length: 3, LowerBound: 1}, {Length: 2, LowerBound: 1}},
Valid: true,
},
&pgtype.InetArray{
Elements: []pgtype.Inet{
{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true},
{IPNet: mustParseCIDR(t, "12.34.56.0/32"), Valid: true},
{IPNet: mustParseCIDR(t, "192.168.0.1/32"), Valid: true},
{IPNet: mustParseCIDR(t, "2607:f8b0:4009:80b::200e/128"), Valid: true},
},
Dimensions: []pgtype.ArrayDimension{
{Length: 2, LowerBound: 4},
{Length: 2, LowerBound: 2},
},
Valid: true,
},
})
}
func TestInetArraySet(t *testing.T) {
successfulTests := []struct {
source interface{}
result pgtype.InetArray
}{
{
source: []*net.IPNet{mustParseCIDR(t, "127.0.0.1/32")},
result: pgtype.InetArray{
Elements: []pgtype.Inet{{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 1}},
Valid: true},
},
{
source: (([]*net.IPNet)(nil)),
result: pgtype.InetArray{},
},
{
source: []net.IP{mustParseCIDR(t, "127.0.0.1/32").IP},
result: pgtype.InetArray{
Elements: []pgtype.Inet{{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 1}},
Valid: true},
},
{
source: (([]net.IP)(nil)),
result: pgtype.InetArray{},
},
{
source: [][]net.IP{{mustParseCIDR(t, "127.0.0.1/32").IP}, {mustParseCIDR(t, "10.0.0.1/32").IP}},
result: pgtype.InetArray{
Elements: []pgtype.Inet{
{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true},
{IPNet: mustParseCIDR(t, "10.0.0.1/32"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 2}, {LowerBound: 1, Length: 1}},
Valid: true},
},
{
source: [][][][]*net.IPNet{
{{{
mustParseCIDR(t, "127.0.0.1/24"),
mustParseCIDR(t, "10.0.0.1/24"),
mustParseCIDR(t, "172.16.0.1/16")}}},
{{{
mustParseCIDR(t, "192.168.0.1/16"),
mustParseCIDR(t, "224.0.0.1/24"),
mustParseCIDR(t, "169.168.0.1/16")}}}},
result: pgtype.InetArray{
Elements: []pgtype.Inet{
{IPNet: mustParseCIDR(t, "127.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "10.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "172.16.0.1/16"), Valid: true},
{IPNet: mustParseCIDR(t, "192.168.0.1/16"), Valid: true},
{IPNet: mustParseCIDR(t, "224.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "169.168.0.1/16"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{
{LowerBound: 1, Length: 2},
{LowerBound: 1, Length: 1},
{LowerBound: 1, Length: 1},
{LowerBound: 1, Length: 3}},
Valid: true},
},
{
source: [2][1]net.IP{{mustParseCIDR(t, "127.0.0.1/32").IP}, {mustParseCIDR(t, "10.0.0.1/32").IP}},
result: pgtype.InetArray{
Elements: []pgtype.Inet{
{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true},
{IPNet: mustParseCIDR(t, "10.0.0.1/32"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 2}, {LowerBound: 1, Length: 1}},
Valid: true},
},
{
source: [2][1][1][3]*net.IPNet{
{{{
mustParseCIDR(t, "127.0.0.1/24"),
mustParseCIDR(t, "10.0.0.1/24"),
mustParseCIDR(t, "172.16.0.1/16")}}},
{{{
mustParseCIDR(t, "192.168.0.1/16"),
mustParseCIDR(t, "224.0.0.1/24"),
mustParseCIDR(t, "169.168.0.1/16")}}}},
result: pgtype.InetArray{
Elements: []pgtype.Inet{
{IPNet: mustParseCIDR(t, "127.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "10.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "172.16.0.1/16"), Valid: true},
{IPNet: mustParseCIDR(t, "192.168.0.1/16"), Valid: true},
{IPNet: mustParseCIDR(t, "224.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "169.168.0.1/16"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{
{LowerBound: 1, Length: 2},
{LowerBound: 1, Length: 1},
{LowerBound: 1, Length: 1},
{LowerBound: 1, Length: 3}},
Valid: true},
},
}
for i, tt := range successfulTests {
var r pgtype.InetArray
err := r.Set(tt.source)
if err != nil {
t.Errorf("%d: %v", i, err)
}
if !reflect.DeepEqual(r, tt.result) {
t.Errorf("%d: expected %v to convert to %v, but it was %v", i, tt.source, tt.result, r)
}
}
}
func TestInetArrayAssignTo(t *testing.T) {
var ipnetSlice []*net.IPNet
var ipSlice []net.IP
var ipSliceDim2 [][]net.IP
var ipnetSliceDim4 [][][][]*net.IPNet
var ipArrayDim2 [2][1]net.IP
var ipnetArrayDim4 [2][1][1][3]*net.IPNet
simpleTests := []struct {
src pgtype.InetArray
dst interface{}
expected interface{}
}{
{
src: pgtype.InetArray{
Elements: []pgtype.Inet{{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 1}},
Valid: true,
},
dst: &ipnetSlice,
expected: []*net.IPNet{mustParseCIDR(t, "127.0.0.1/32")},
},
{
src: pgtype.InetArray{
Elements: []pgtype.Inet{{}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 1}},
Valid: true,
},
dst: &ipnetSlice,
expected: []*net.IPNet{nil},
},
{
src: pgtype.InetArray{
Elements: []pgtype.Inet{{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 1}},
Valid: true,
},
dst: &ipSlice,
expected: []net.IP{mustParseCIDR(t, "127.0.0.1/32").IP},
},
{
src: pgtype.InetArray{
Elements: []pgtype.Inet{{}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 1}},
Valid: true,
},
dst: &ipSlice,
expected: []net.IP{nil},
},
{
src: pgtype.InetArray{},
dst: &ipnetSlice,
expected: (([]*net.IPNet)(nil)),
},
{
src: pgtype.InetArray{Valid: true},
dst: &ipnetSlice,
expected: []*net.IPNet{},
},
{
src: pgtype.InetArray{},
dst: &ipSlice,
expected: (([]net.IP)(nil)),
},
{
src: pgtype.InetArray{Valid: true},
dst: &ipSlice,
expected: []net.IP{},
},
{
src: pgtype.InetArray{
Elements: []pgtype.Inet{
{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true},
{IPNet: mustParseCIDR(t, "10.0.0.1/32"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 2}, {LowerBound: 1, Length: 1}},
Valid: true},
dst: &ipSliceDim2,
expected: [][]net.IP{{mustParseCIDR(t, "127.0.0.1/32").IP}, {mustParseCIDR(t, "10.0.0.1/32").IP}},
},
{
src: pgtype.InetArray{
Elements: []pgtype.Inet{
{IPNet: mustParseCIDR(t, "127.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "10.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "172.16.0.1/16"), Valid: true},
{IPNet: mustParseCIDR(t, "192.168.0.1/16"), Valid: true},
{IPNet: mustParseCIDR(t, "224.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "169.168.0.1/16"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{
{LowerBound: 1, Length: 2},
{LowerBound: 1, Length: 1},
{LowerBound: 1, Length: 1},
{LowerBound: 1, Length: 3}},
Valid: true},
dst: &ipnetSliceDim4,
expected: [][][][]*net.IPNet{
{{{
mustParseCIDR(t, "127.0.0.1/24"),
mustParseCIDR(t, "10.0.0.1/24"),
mustParseCIDR(t, "172.16.0.1/16")}}},
{{{
mustParseCIDR(t, "192.168.0.1/16"),
mustParseCIDR(t, "224.0.0.1/24"),
mustParseCIDR(t, "169.168.0.1/16")}}}},
},
{
src: pgtype.InetArray{
Elements: []pgtype.Inet{
{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true},
{IPNet: mustParseCIDR(t, "10.0.0.1/32"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{{LowerBound: 1, Length: 2}, {LowerBound: 1, Length: 1}},
Valid: true},
dst: &ipArrayDim2,
expected: [2][1]net.IP{{mustParseCIDR(t, "127.0.0.1/32").IP}, {mustParseCIDR(t, "10.0.0.1/32").IP}},
},
{
src: pgtype.InetArray{
Elements: []pgtype.Inet{
{IPNet: mustParseCIDR(t, "127.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "10.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "172.16.0.1/16"), Valid: true},
{IPNet: mustParseCIDR(t, "192.168.0.1/16"), Valid: true},
{IPNet: mustParseCIDR(t, "224.0.0.1/24"), Valid: true},
{IPNet: mustParseCIDR(t, "169.168.0.1/16"), Valid: true}},
Dimensions: []pgtype.ArrayDimension{
{LowerBound: 1, Length: 2},
{LowerBound: 1, Length: 1},
{LowerBound: 1, Length: 1},
{LowerBound: 1, Length: 3}},
Valid: true},
dst: &ipnetArrayDim4,
expected: [2][1][1][3]*net.IPNet{
{{{
mustParseCIDR(t, "127.0.0.1/24"),
mustParseCIDR(t, "10.0.0.1/24"),
mustParseCIDR(t, "172.16.0.1/16")}}},
{{{
mustParseCIDR(t, "192.168.0.1/16"),
mustParseCIDR(t, "224.0.0.1/24"),
mustParseCIDR(t, "169.168.0.1/16")}}}},
},
}
for i, tt := range simpleTests {
err := tt.src.AssignTo(tt.dst)
if err != nil {
t.Errorf("%d: %v", i, err)
}
if dst := reflect.ValueOf(tt.dst).Elem().Interface(); !reflect.DeepEqual(dst, tt.expected) {
t.Errorf("%d: expected %v to assign %v, but result was %v", i, tt.src, tt.expected, dst)
}
}
}

View File

@ -2,138 +2,48 @@ package pgtype_test
import (
"net"
"reflect"
"testing"
"github.com/jackc/pgx/v5/pgtype"
"github.com/jackc/pgx/v5/pgtype/testutil"
"github.com/stretchr/testify/assert"
)
func isExpectedEqIPNet(a interface{}) func(interface{}) bool {
return func(v interface{}) bool {
ap := a.(*net.IPNet)
vp := v.(net.IPNet)
return ap.IP.Equal(vp.IP) && ap.Mask.String() == vp.Mask.String()
}
}
func TestInetTranscode(t *testing.T) {
testutil.TestSuccessfulTranscode(t, "inet", []interface{}{
&pgtype.Inet{IPNet: mustParseInet(t, "0.0.0.0/32"), Valid: true},
&pgtype.Inet{IPNet: mustParseInet(t, "127.0.0.1/8"), Valid: true},
&pgtype.Inet{IPNet: mustParseInet(t, "12.34.56.65/32"), Valid: true},
&pgtype.Inet{IPNet: mustParseInet(t, "192.168.1.16/24"), Valid: true},
&pgtype.Inet{IPNet: mustParseInet(t, "255.0.0.0/8"), Valid: true},
&pgtype.Inet{IPNet: mustParseInet(t, "255.255.255.255/32"), Valid: true},
&pgtype.Inet{IPNet: mustParseInet(t, "10.0.0.1"), Valid: true},
&pgtype.Inet{IPNet: mustParseInet(t, "2607:f8b0:4009:80b::200e"), Valid: true},
&pgtype.Inet{IPNet: mustParseInet(t, "::1/64"), Valid: true},
&pgtype.Inet{IPNet: mustParseInet(t, "::/0"), Valid: true},
&pgtype.Inet{IPNet: mustParseInet(t, "::1/128"), Valid: true},
&pgtype.Inet{IPNet: mustParseInet(t, "2607:f8b0:4009:80b::200e/64"), Valid: true},
&pgtype.Inet{},
testPgxCodec(t, "inet", []PgxTranscodeTestCase{
{mustParseInet(t, "0.0.0.0/32"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "0.0.0.0/32"))},
{mustParseInet(t, "127.0.0.1/8"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "127.0.0.1/8"))},
{mustParseInet(t, "12.34.56.65/32"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "12.34.56.65/32"))},
{mustParseInet(t, "192.168.1.16/24"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "192.168.1.16/24"))},
{mustParseInet(t, "255.0.0.0/8"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "255.0.0.0/8"))},
{mustParseInet(t, "255.255.255.255/32"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "255.255.255.255/32"))},
{mustParseInet(t, "2607:f8b0:4009:80b::200e"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "2607:f8b0:4009:80b::200e"))},
{mustParseInet(t, "::1/64"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "::1/64"))},
{mustParseInet(t, "::/0"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "::/0"))},
{mustParseInet(t, "::1/128"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "::1/128"))},
{mustParseInet(t, "2607:f8b0:4009:80b::200e/64"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "2607:f8b0:4009:80b::200e/64"))},
{nil, new(pgtype.Inet), isExpectedEq(pgtype.Inet{})},
})
}
func TestCidrTranscode(t *testing.T) {
testutil.TestSuccessfulTranscode(t, "cidr", []interface{}{
&pgtype.Inet{IPNet: mustParseCIDR(t, "0.0.0.0/32"), Valid: true},
&pgtype.Inet{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true},
&pgtype.Inet{IPNet: mustParseCIDR(t, "12.34.56.0/32"), Valid: true},
&pgtype.Inet{IPNet: mustParseCIDR(t, "192.168.1.0/24"), Valid: true},
&pgtype.Inet{IPNet: mustParseCIDR(t, "255.0.0.0/8"), Valid: true},
&pgtype.Inet{IPNet: mustParseCIDR(t, "255.255.255.255/32"), Valid: true},
&pgtype.Inet{IPNet: mustParseCIDR(t, "::/128"), Valid: true},
&pgtype.Inet{IPNet: mustParseCIDR(t, "::/0"), Valid: true},
&pgtype.Inet{IPNet: mustParseCIDR(t, "::1/128"), Valid: true},
&pgtype.Inet{IPNet: mustParseCIDR(t, "2607:f8b0:4009:80b::200e/128"), Valid: true},
&pgtype.Inet{},
testPgxCodec(t, "cidr", []PgxTranscodeTestCase{
{mustParseInet(t, "0.0.0.0/32"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "0.0.0.0/32"))},
{mustParseInet(t, "127.0.0.1/32"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "127.0.0.1/32"))},
{mustParseInet(t, "12.34.56.0/32"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "12.34.56.0/32"))},
{mustParseInet(t, "192.168.1.0/24"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "192.168.1.0/24"))},
{mustParseInet(t, "255.0.0.0/8"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "255.0.0.0/8"))},
{mustParseInet(t, "::/128"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "::/128"))},
{mustParseInet(t, "::/0"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "::/0"))},
{mustParseInet(t, "::1/128"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "::1/128"))},
{mustParseInet(t, "2607:f8b0:4009:80b::200e/128"), new(net.IPNet), isExpectedEqIPNet(mustParseInet(t, "2607:f8b0:4009:80b::200e/128"))},
{nil, new(pgtype.Inet), isExpectedEq(pgtype.Inet{})},
})
}
func TestInetSet(t *testing.T) {
successfulTests := []struct {
source interface{}
result pgtype.Inet
}{
{source: mustParseCIDR(t, "127.0.0.1/32"), result: pgtype.Inet{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true}},
{source: mustParseCIDR(t, "127.0.0.1/32").IP, result: pgtype.Inet{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true}},
{source: "127.0.0.1/32", result: pgtype.Inet{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true}},
{source: "1.2.3.4/24", result: pgtype.Inet{IPNet: &net.IPNet{IP: net.ParseIP("1.2.3.4"), Mask: net.CIDRMask(24, 32)}, Valid: true}},
{source: "10.0.0.1", result: pgtype.Inet{IPNet: mustParseInet(t, "10.0.0.1"), Valid: true}},
{source: "2607:f8b0:4009:80b::200e", result: pgtype.Inet{IPNet: mustParseInet(t, "2607:f8b0:4009:80b::200e"), Valid: true}},
{source: net.ParseIP(""), result: pgtype.Inet{}},
}
for i, tt := range successfulTests {
var r pgtype.Inet
err := r.Set(tt.source)
if err != nil {
t.Errorf("%d: %v", i, err)
continue
}
assert.Equalf(t, tt.result.Valid, r.Valid, "%d: Status", i)
if tt.result.Valid {
assert.Equalf(t, tt.result.IPNet.Mask, r.IPNet.Mask, "%d: IP", i)
assert.Truef(t, tt.result.IPNet.IP.Equal(r.IPNet.IP), "%d: Mask", i)
}
}
}
func TestInetAssignTo(t *testing.T) {
var ipnet net.IPNet
var pipnet *net.IPNet
var ip net.IP
var pip *net.IP
simpleTests := []struct {
src pgtype.Inet
dst interface{}
expected interface{}
}{
{src: pgtype.Inet{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true}, dst: &ipnet, expected: *mustParseCIDR(t, "127.0.0.1/32")},
{src: pgtype.Inet{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true}, dst: &ip, expected: mustParseCIDR(t, "127.0.0.1/32").IP},
{src: pgtype.Inet{}, dst: &pipnet, expected: ((*net.IPNet)(nil))},
{src: pgtype.Inet{}, dst: &pip, expected: ((*net.IP)(nil))},
}
for i, tt := range simpleTests {
err := tt.src.AssignTo(tt.dst)
if err != nil {
t.Errorf("%d: %v", i, err)
}
if dst := reflect.ValueOf(tt.dst).Elem().Interface(); !reflect.DeepEqual(dst, tt.expected) {
t.Errorf("%d: expected %v to assign %#v, but result was %#v", i, tt.src, tt.expected, dst)
}
}
pointerAllocTests := []struct {
src pgtype.Inet
dst interface{}
expected interface{}
}{
{src: pgtype.Inet{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true}, dst: &pipnet, expected: *mustParseCIDR(t, "127.0.0.1/32")},
{src: pgtype.Inet{IPNet: mustParseCIDR(t, "127.0.0.1/32"), Valid: true}, dst: &pip, expected: mustParseCIDR(t, "127.0.0.1/32").IP},
}
for i, tt := range pointerAllocTests {
err := tt.src.AssignTo(tt.dst)
if err != nil {
t.Errorf("%d: %v", i, err)
}
if dst := reflect.ValueOf(tt.dst).Elem().Elem().Interface(); !reflect.DeepEqual(dst, tt.expected) {
t.Errorf("%d: expected %v to assign %v, but result was %v", i, tt.src, tt.expected, dst)
}
}
errorTests := []struct {
src pgtype.Inet
dst interface{}
}{
{src: pgtype.Inet{IPNet: mustParseCIDR(t, "192.168.0.0/16"), Valid: true}, dst: &ip},
{src: pgtype.Inet{}, dst: &ipnet},
}
for i, tt := range errorTests {
err := tt.src.AssignTo(tt.dst)
if err == nil {
t.Errorf("%d: expected error but none was returned (%v -> %v)", i, tt.src, tt.dst)
}
}
}

View File

@ -262,11 +262,11 @@ func NewConnInfo() *ConnInfo {
ci.RegisterDataType(DataType{Name: "_bool", OID: BoolArrayOID, Codec: &ArrayCodec{ElementCodec: BoolCodec{}, ElementOID: BoolOID}})
ci.RegisterDataType(DataType{Name: "_bpchar", OID: BPCharArrayOID, Codec: &ArrayCodec{ElementCodec: TextCodec{}, ElementOID: BPCharOID}})
ci.RegisterDataType(DataType{Name: "_bytea", OID: ByteaArrayOID, Codec: &ArrayCodec{ElementCodec: ByteaCodec{}, ElementOID: ByteaOID}})
ci.RegisterDataType(DataType{Value: &CIDRArray{}, Name: "_cidr", OID: CIDRArrayOID})
ci.RegisterDataType(DataType{Name: "_cidr", OID: CIDRArrayOID, Codec: &ArrayCodec{ElementCodec: InetCodec{}, ElementOID: CIDROID}})
ci.RegisterDataType(DataType{Name: "_date", OID: DateArrayOID, Codec: &ArrayCodec{ElementCodec: DateCodec{}, ElementOID: DateOID}})
ci.RegisterDataType(DataType{Value: &Float4Array{}, Name: "_float4", OID: Float4ArrayOID})
ci.RegisterDataType(DataType{Value: &Float8Array{}, Name: "_float8", OID: Float8ArrayOID})
ci.RegisterDataType(DataType{Value: &InetArray{}, Name: "_inet", OID: InetArrayOID})
ci.RegisterDataType(DataType{Name: "_inet", OID: InetArrayOID, Codec: &ArrayCodec{ElementCodec: InetCodec{}, ElementOID: InetOID}})
ci.RegisterDataType(DataType{Name: "_int2", OID: Int2ArrayOID, Codec: &ArrayCodec{ElementCodec: Int2Codec{}, ElementOID: Int2OID}})
ci.RegisterDataType(DataType{Name: "_int4", OID: Int4ArrayOID, Codec: &ArrayCodec{ElementCodec: Int4Codec{}, ElementOID: Int4OID}})
ci.RegisterDataType(DataType{Name: "_int8", OID: Int8ArrayOID, Codec: &ArrayCodec{ElementCodec: Int8Codec{}, ElementOID: Int8OID}})
@ -293,13 +293,13 @@ func NewConnInfo() *ConnInfo {
ci.RegisterDataType(DataType{Name: "bytea", OID: ByteaOID, Codec: ByteaCodec{}})
ci.RegisterDataType(DataType{Value: &QChar{}, Name: "char", OID: QCharOID})
ci.RegisterDataType(DataType{Name: "cid", OID: CIDOID, Codec: Uint32Codec{}})
ci.RegisterDataType(DataType{Value: &CIDR{}, Name: "cidr", OID: CIDROID})
ci.RegisterDataType(DataType{Name: "cidr", OID: CIDROID, Codec: InetCodec{}})
ci.RegisterDataType(DataType{Name: "circle", OID: CircleOID, Codec: CircleCodec{}})
ci.RegisterDataType(DataType{Name: "date", OID: DateOID, Codec: DateCodec{}})
// ci.RegisterDataType(DataType{Value: &Daterange{}, Name: "daterange", OID: DaterangeOID})
ci.RegisterDataType(DataType{Value: &Float4{}, Name: "float4", OID: Float4OID})
ci.RegisterDataType(DataType{Value: &Float8{}, Name: "float8", OID: Float8OID})
ci.RegisterDataType(DataType{Value: &Inet{}, Name: "inet", OID: InetOID})
ci.RegisterDataType(DataType{Name: "inet", OID: InetOID, Codec: InetCodec{}})
ci.RegisterDataType(DataType{Name: "int2", OID: Int2OID, Codec: Int2Codec{}})
ci.RegisterDataType(DataType{Name: "int4", OID: Int4OID, Codec: Int4Codec{}})
// ci.RegisterDataType(DataType{Value: &Int4range{}, Name: "int4range", OID: Int4rangeOID})
@ -336,15 +336,26 @@ func NewConnInfo() *ConnInfo {
ci.RegisterDataType(DataType{Name: "xid", OID: XIDOID, Codec: Uint32Codec{}})
registerDefaultPgTypeVariants := func(name, arrayName string, value interface{}) {
// T
ci.RegisterDefaultPgType(value, name)
valueType := reflect.TypeOf(value)
// *T
valueType := reflect.TypeOf(value)
ci.RegisterDefaultPgType(reflect.New(valueType).Interface(), name)
// []T
sliceType := reflect.SliceOf(valueType)
ci.RegisterDefaultPgType(reflect.MakeSlice(sliceType, 0, 0).Interface(), arrayName)
// *[]T
ci.RegisterDefaultPgType(reflect.New(sliceType).Interface(), arrayName)
// []*T
sliceOfPointerType := reflect.SliceOf(reflect.TypeOf(reflect.New(valueType).Interface()))
ci.RegisterDefaultPgType(reflect.MakeSlice(sliceOfPointerType, 0, 0).Interface(), arrayName)
// *[]*T
ci.RegisterDefaultPgType(reflect.New(sliceOfPointerType).Interface(), arrayName)
}
// Integer types that directly map to a PostgreSQL type
@ -368,8 +379,7 @@ func NewConnInfo() *ConnInfo {
registerDefaultPgTypeVariants("bytea", "_bytea", []byte(nil))
registerDefaultPgTypeVariants("inet", "_inet", net.IP{})
ci.RegisterDefaultPgType((*net.IPNet)(nil), "cidr")
ci.RegisterDefaultPgType([]*net.IPNet(nil), "_cidr")
registerDefaultPgTypeVariants("cidr", "_cidr", net.IPNet{})
return ci
}
@ -816,6 +826,10 @@ func tryWrapBuiltinTypeScanPlan(dst interface{}) (plan WrappedScanPlanNextSetter
switch dst := dst.(type) {
case *time.Time:
return &wrapTimeScanPlan{}, (*timeWrapper)(dst), true
case *net.IPNet:
return &wrapNetIPNetScanPlan{}, (*netIPNetWrapper)(dst), true
case *net.IP:
return &wrapNetIPScanPlan{}, (*netIPWrapper)(dst), true
}
return nil, nil, false
@ -831,6 +845,26 @@ func (plan *wrapTimeScanPlan) Scan(ci *ConnInfo, oid uint32, formatCode int16, s
return plan.next.Scan(ci, oid, formatCode, src, (*timeWrapper)(dst.(*time.Time)))
}
type wrapNetIPNetScanPlan struct {
next ScanPlan
}
func (plan *wrapNetIPNetScanPlan) SetNext(next ScanPlan) { plan.next = next }
func (plan *wrapNetIPNetScanPlan) Scan(ci *ConnInfo, oid uint32, formatCode int16, src []byte, dst interface{}) error {
return plan.next.Scan(ci, oid, formatCode, src, (*netIPNetWrapper)(dst.(*net.IPNet)))
}
type wrapNetIPScanPlan struct {
next ScanPlan
}
func (plan *wrapNetIPScanPlan) SetNext(next ScanPlan) { plan.next = next }
func (plan *wrapNetIPScanPlan) Scan(ci *ConnInfo, oid uint32, formatCode int16, src []byte, dst interface{}) error {
return plan.next.Scan(ci, oid, formatCode, src, (*netIPWrapper)(dst.(*net.IP)))
}
type pointerEmptyInterfaceScanPlan struct {
codec Codec
}
@ -901,6 +935,7 @@ func (ci *ConnInfo) PlanScan(oid uint32, formatCode int16, dst interface{}) Scan
if oid == 0 {
if dataType, ok := ci.DataTypeForValue(dst); ok {
dt = dataType
oid = dt.OID // Preserve assumed OID in case we are recursively called below.
}
} else {
if dataType, ok := ci.DataTypeForOID(oid); ok {
@ -1031,6 +1066,7 @@ func (ci *ConnInfo) PlanEncode(oid uint32, format int16, value interface{}) Enco
if oid == 0 {
if dataType, ok := ci.DataTypeForValue(value); ok {
dt = dataType
oid = dt.OID // Preserve assumed OID in case we are recursively called below.
}
} else {
if dataType, ok := ci.DataTypeForOID(oid); ok {
@ -1166,6 +1202,10 @@ func tryWrapBuiltinTypeEncodePlan(value interface{}) (plan WrappedEncodePlanNext
return &wrapStringEncodePlan{}, stringWrapper(value), true
case time.Time:
return &wrapTimeEncodePlan{}, timeWrapper(value), true
case net.IPNet:
return &wrapNetIPNetEncodePlan{}, netIPNetWrapper(value), true
case net.IP:
return &wrapNetIPEncodePlan{}, netIPWrapper(value), true
}
return nil, nil, false
@ -1311,6 +1351,26 @@ func (plan *wrapTimeEncodePlan) Encode(value interface{}, buf []byte) (newBuf []
return plan.next.Encode(timeWrapper(value.(time.Time)), buf)
}
type wrapNetIPNetEncodePlan struct {
next EncodePlan
}
func (plan *wrapNetIPNetEncodePlan) SetNext(next EncodePlan) { plan.next = next }
func (plan *wrapNetIPNetEncodePlan) Encode(value interface{}, buf []byte) (newBuf []byte, err error) {
return plan.next.Encode(netIPNetWrapper(value.(net.IPNet)), buf)
}
type wrapNetIPEncodePlan struct {
next EncodePlan
}
func (plan *wrapNetIPEncodePlan) SetNext(next EncodePlan) { plan.next = next }
func (plan *wrapNetIPEncodePlan) Encode(value interface{}, buf []byte) (newBuf []byte, err error) {
return plan.next.Encode(netIPWrapper(value.(net.IP)), buf)
}
// Encode appends the encoded bytes of value to buf. If value is the SQL value NULL then append nothing and return
// (nil, nil). The caller of Encode is responsible for writing the correct NULL value or the length of the data
// written.