hyper/cubes.go

177 lines
4.4 KiB
Go

package hyper
// Hypercube is represented by a slice of its coordinates.
type Cube []int
type Cubes []Cube
// Parameters of space discretization.
type Params struct {
// Value limits per dimension. For example 0, 255 for pixel values.
Min, Max float64
// Uncertainty interval expressed as a fraction of bucketWidth
// (for example 0.25 for eps = 1/4 of bucketWidth).
EpsPercent float64
// Number of buckets per dimension.
NumBuckets int
}
// CubeSet returns a set of hypercubes, which represent
// fuzzy discretization of one n-dimensional vector,
// as described in
// https://vitali-fedulov.github.io/algorithm-for-hashing-high-dimensional-float-vectors.html
// One hupercube is defined by bucket numbers in each dimension.
// min and max are minimum and maximum possible values of
// the vector components. The assumption is that min and max
// are the same for all dimensions.
func CubeSet(vector []float64, params Params) (set Cubes) {
if params.EpsPercent >= 0.5 {
panic(`Error: EpsPercent must be less than 0.5.`)
}
var (
bC int // Central bucket number.
bL, bR int // Left and right bucket number.
setL, setR Cubes // Set clones (for Left and Right).
branching bool // Branching flag.
)
// Rescaling vector to avoid potential mistakes with
// divisions and offsets later on.
rescaled := rescale(vector, params)
// After the rescale value range of the vector are
// [0, numBuckets], and not [min, max].
// min = 0.0 from now on.
max := float64(params.NumBuckets)
for _, val := range rescaled {
branching = false
bL = int(val - params.EpsPercent)
bR = int(val + params.EpsPercent)
// Get extreme values out of the way.
if val-params.EpsPercent <= 0.0 { // This means that val >= 0.
bC = bR
goto branchingCheck // No branching.
}
// Get extreme values out of the way.
if val+params.EpsPercent >= max { // This means that val =< max.
// Above max = numBuckets.
bC = bL
goto branchingCheck // No branching.
}
if bL == bR {
bC = bL
goto branchingCheck // No branching.
} else { // Meaning bL != bR and not any condition above.
branching = true
}
branchingCheck:
if branching {
setL = clone(set)
setR = clone(set)
if len(setL) == 0 {
setL = append(setL, []int{bL})
} else {
for i := range setL {
setL[i] = append(setL[i], bL)
}
}
if len(setR) == 0 {
setR = append(setR, []int{bR})
} else {
for i := range setR {
setR[i] = append(setR[i], bR)
}
}
set = append(setL, setR...)
} else { // No branching.
if len(set) == 0 {
set = append(set, []int{bC})
} else {
for i := range set {
set[i] = append(set[i], bC)
}
}
}
}
// Real use case verification that branching works correctly
// and no buckets are lost for a very large number of vectors.
// TODO: Remove once tested.
for i := 0; i < len(set); i++ {
if len(set[i]) != len(vector) {
panic(`Number of hypercube coordinates must equal
to len(vector).`)
}
}
return set
}
// CentralCube returns the hypercube containing the vector end.
// Arguments are the same as for the CubeSet function.
func CentralCube(vector []float64, params Params) (central Cube) {
if params.EpsPercent >= 0.5 {
panic(`Error: EpsPercent must be less than 0.5.`)
}
var bC int // Central bucket numbers.
// Rescaling vector to avoid potential mistakes with
// divisions and offsets later on.
rescaled := rescale(vector, params)
// After the rescale value range of the vector are
// [0, numBuckets], and not [min, max].
// min = 0.0 from now on.
max := float64(params.NumBuckets)
for _, val := range rescaled {
bC = int(val)
if val-params.EpsPercent <= 0.0 { // This means that val >= 0.
bC = int(val + params.EpsPercent)
}
if val+params.EpsPercent >= max { // Meaning val =< max.
bC = int(val - params.EpsPercent)
}
central = append(central, bC)
}
return central
}
// rescale is a helper function to offset and rescale all values
// to [0, numBuckets] range.
func rescale(vector []float64, params Params) []float64 {
rescaled := make([]float64, len(vector))
amp := params.Max - params.Min
for i := range vector {
// Offset to zero and rescale to [0, numBuckets] range.
rescaled[i] =
(vector[i] - params.Min) * float64(params.NumBuckets) / amp
}
return rescaled
}
// clone makes an unlinked copy of a 2D slice.
func clone(src Cubes) (dst Cubes) {
dst = make(Cubes, len(src))
for i := range src {
dst[i] = append(Cube{}, src[i]...)
}
return dst
}