go-exif/type.go

612 lines
16 KiB
Go

package exif
import (
"bytes"
"errors"
"fmt"
"encoding/binary"
"github.com/dsoprea/go-logging"
)
const (
TypeByte = uint16(1)
TypeAscii = uint16(2)
TypeShort = uint16(3)
TypeLong = uint16(4)
TypeRational = uint16(5)
TypeUndefined = uint16(7)
TypeSignedLong = uint16(9)
TypeSignedRational = uint16(10)
)
var (
TypeNames = map[uint16]string {
TypeByte: "BYTE",
TypeAscii: "ASCII",
TypeShort: "SHORT",
TypeLong: "LONG",
TypeRational: "RATIONAL",
TypeUndefined: "UNDEFINED",
TypeSignedLong: "SLONG",
TypeSignedRational: "SRATIONAL",
}
)
var (
typeLogger = log.NewLogger("exif.type")
)
var (
// ErrCantDetermineTagValueSize is used when we're trying to determine a
//size for a non-standard/undefined type.
ErrCantDetermineTagValueSize = errors.New("can not determine tag-value size")
// ErrNotEnoughData is used when there isn't enough data to accomodate what
// we're trying to parse (sizeof(type) * unit_count).
ErrNotEnoughData = errors.New("not enough data for type")
// ErrWrongType is used when we try to parse anything other than the current type.
ErrWrongType = errors.New("wrong type, can not parse")
)
const (
BigEndianByteOrder = iota
LittleEndianByteOrder = iota
)
type IfdByteOrder int
func (ibo IfdByteOrder) IsBigEndian() bool {
return ibo == BigEndianByteOrder
}
func (ibo IfdByteOrder) IsLittleEndian() bool {
return ibo == LittleEndianByteOrder
}
type Rational struct {
Numerator uint32
Denominator uint32
}
type SignedRational struct {
Numerator int32
Denominator int32
}
type TagType struct {
tagType uint16
name string
byteOrder IfdByteOrder
}
func NewTagType(tagType uint16, byteOrder IfdByteOrder) TagType {
name, found := TypeNames[tagType]
if found == false {
log.Panicf("tag-type not valid: 0x%04x", tagType)
}
return TagType{
tagType: tagType,
name: name,
byteOrder: byteOrder,
}
}
func (tt TagType) String() string {
return fmt.Sprintf("TagType<NAME=[%s]>", tt.name)
}
func (tt TagType) Name() string {
return tt.name
}
func (tt TagType) Type() uint16 {
return tt.tagType
}
func (tt TagType) Size() int {
if tt.tagType == TypeByte {
return 1
} else if tt.tagType == TypeAscii {
return 1
} else if tt.tagType == TypeShort {
return 2
} else if tt.tagType == TypeLong {
return 4
} else if tt.tagType == TypeRational {
return 8
} else if tt.tagType == TypeSignedLong {
return 4
} else if tt.tagType == TypeSignedRational {
return 8
} else {
log.Panic(ErrCantDetermineTagValueSize)
// Never called.
return 0
}
}
// ValueIsEmbedded will return a boolean indicating whether the value should be
// found directly within the IFD entry or an offset to somewhere else.
func (tt TagType) ValueIsEmbedded(unitCount uint32) bool {
return (tt.Size() * int(unitCount)) <= 4
}
func (tt TagType) ParseBytes(data []byte, rawCount uint32) (value []uint8, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if tt.tagType != TypeByte {
log.Panic(ErrWrongType)
}
count := int(rawCount)
if len(data) < (tt.Size() * count) {
log.Panic(ErrNotEnoughData)
}
value = make([]uint8, count)
for i := 0; i < count; i++ {
value[i] = uint8(data[i])
}
return value, nil
}
func (tt TagType) ParseAscii(data []byte, rawCount uint32) (value string, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if tt.tagType != TypeAscii {
log.Panic(ErrWrongType)
}
count := int(rawCount)
if len(data) < (tt.Size() * count) {
log.Panic(ErrNotEnoughData)
}
return string(data[:count]), nil
}
func (tt TagType) ParseShorts(data []byte, rawCount uint32) (value []uint16, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if tt.tagType != TypeShort {
log.Panic(ErrWrongType)
}
count := int(rawCount)
if len(data) < (tt.Size() * count) {
log.Panic(ErrNotEnoughData)
}
value = make([]uint16, count)
for i := 0; i < count; i++ {
if tt.byteOrder.IsBigEndian() {
value[i] = binary.BigEndian.Uint16(data[i*2:])
} else {
value[i] = binary.LittleEndian.Uint16(data[i*2:])
}
}
return value, nil
}
func (tt TagType) ParseLongs(data []byte, rawCount uint32) (value []uint32, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if tt.tagType != TypeLong {
log.Panic(ErrWrongType)
}
count := int(rawCount)
if len(data) < (tt.Size() * count) {
log.Panic(ErrNotEnoughData)
}
value = make([]uint32, count)
for i := 0; i < count; i++ {
if tt.byteOrder.IsBigEndian() {
value[i] = binary.BigEndian.Uint32(data[i*4:])
} else {
value[i] = binary.LittleEndian.Uint32(data[i*4:])
}
}
return value, nil
}
func (tt TagType) ParseRationals(data []byte, rawCount uint32) (value []Rational, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if tt.tagType != TypeRational {
log.Panic(ErrWrongType)
}
count := int(rawCount)
if len(data) < (tt.Size() * count) {
log.Panic(ErrNotEnoughData)
}
value = make([]Rational, count)
for i := 0; i < count; i++ {
if tt.byteOrder.IsBigEndian() {
value[i].Numerator = binary.BigEndian.Uint32(data[i*8:])
value[i].Denominator = binary.BigEndian.Uint32(data[i*8 + 4:])
} else {
value[i].Numerator = binary.LittleEndian.Uint32(data[i*8:])
value[i].Denominator = binary.LittleEndian.Uint32(data[i*8 + 4:])
}
}
return value, nil
}
func (tt TagType) ParseSignedLongs(data []byte, rawCount uint32) (value []int32, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if tt.tagType != TypeSignedLong {
log.Panic(ErrWrongType)
}
count := int(rawCount)
if len(data) < (tt.Size() * count) {
log.Panic(ErrNotEnoughData)
}
b := bytes.NewBuffer(data)
value = make([]int32, count)
for i := 0; i < count; i++ {
if tt.byteOrder.IsBigEndian() {
err := binary.Read(b, binary.BigEndian, &value[i])
log.PanicIf(err)
} else {
err := binary.Read(b, binary.LittleEndian, &value[i])
log.PanicIf(err)
}
}
return value, nil
}
func (tt TagType) ParseSignedRationals(data []byte, rawCount uint32) (value []SignedRational, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if tt.tagType != TypeSignedRational {
log.Panic(ErrWrongType)
}
count := int(rawCount)
if len(data) < (tt.Size() * count) {
log.Panic(ErrNotEnoughData)
}
b := bytes.NewBuffer(data)
value = make([]SignedRational, count)
for i := 0; i < count; i++ {
if tt.byteOrder.IsBigEndian() {
err = binary.Read(b, binary.BigEndian, &value[i].Numerator)
log.PanicIf(err)
err = binary.Read(b, binary.BigEndian, &value[i].Denominator)
log.PanicIf(err)
} else {
err = binary.Read(b, binary.LittleEndian, &value[i].Numerator)
log.PanicIf(err)
err = binary.Read(b, binary.LittleEndian, &value[i].Denominator)
log.PanicIf(err)
}
}
return value, nil
}
func (tt TagType) ReadByteValues(valueContext ValueContext) (value []byte, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if tt.ValueIsEmbedded(valueContext.UnitCount) == true {
typeLogger.Debugf(nil, "Reading BYTE value (embedded).")
value, err = tt.ParseBytes(valueContext.RawValueOffset, valueContext.UnitCount)
log.PanicIf(err)
} else {
typeLogger.Debugf(nil, "Reading BYTE value (at offset).")
value, err = tt.ParseBytes(valueContext.RawExif[valueContext.ValueOffset:], valueContext.UnitCount)
log.PanicIf(err)
}
return value, nil
}
func (tt TagType) ReadAsciiValue(valueContext ValueContext) (value string, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if tt.ValueIsEmbedded(valueContext.UnitCount) == true {
typeLogger.Debugf(nil, "Reading ASCII value (embedded).")
value, err = tt.ParseAscii(valueContext.RawValueOffset, valueContext.UnitCount)
log.PanicIf(err)
} else {
typeLogger.Debugf(nil, "Reading ASCII value (at offset).")
value, err = tt.ParseAscii(valueContext.RawExif[valueContext.ValueOffset:], valueContext.UnitCount)
log.PanicIf(err)
}
len_ := len(value)
if value[len_ - 1] != 0 {
typeLogger.Warningf(nil, "ascii value not terminated with nul: [%s]", value)
// TODO(dustin): !! Debugging
fmt.Printf("ascii value not terminated with nul: [%s]", value)
return value, nil
} else {
return value[:len_ - 1], nil
}
}
func (tt TagType) ReadShortValues(valueContext ValueContext) (value []uint16, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if tt.ValueIsEmbedded(valueContext.UnitCount) == true {
typeLogger.Debugf(nil, "Reading SHORT value (embedded).")
value, err = tt.ParseShorts(valueContext.RawValueOffset, valueContext.UnitCount)
log.PanicIf(err)
} else {
typeLogger.Debugf(nil, "Reading SHORT value (at offset).")
value, err = tt.ParseShorts(valueContext.RawExif[valueContext.ValueOffset:], valueContext.UnitCount)
log.PanicIf(err)
}
return value, nil
}
func (tt TagType) ReadLongValues(valueContext ValueContext) (value []uint32, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if tt.ValueIsEmbedded(valueContext.UnitCount) == true {
typeLogger.Debugf(nil, "Reading LONG value (embedded).")
value, err = tt.ParseLongs(valueContext.RawValueOffset, valueContext.UnitCount)
log.PanicIf(err)
} else {
typeLogger.Debugf(nil, "Reading LONG value (at offset).")
value, err = tt.ParseLongs(valueContext.RawExif[valueContext.ValueOffset:], valueContext.UnitCount)
log.PanicIf(err)
}
return value, nil
}
func (tt TagType) ReadRationalValues(valueContext ValueContext) (value []Rational, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if tt.ValueIsEmbedded(valueContext.UnitCount) == true {
typeLogger.Debugf(nil, "Reading RATIONAL value (embedded).")
value, err = tt.ParseRationals(valueContext.RawValueOffset, valueContext.UnitCount)
log.PanicIf(err)
} else {
typeLogger.Debugf(nil, "Reading RATIONAL value (at offset).")
value, err = tt.ParseRationals(valueContext.RawExif[valueContext.ValueOffset:], valueContext.UnitCount)
log.PanicIf(err)
}
return value, nil
}
func (tt TagType) ReadSignedLongValues(valueContext ValueContext) (value []int32, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if tt.ValueIsEmbedded(valueContext.UnitCount) == true {
typeLogger.Debugf(nil, "Reading SLONG value (embedded).")
value, err = tt.ParseSignedLongs(valueContext.RawValueOffset, valueContext.UnitCount)
log.PanicIf(err)
} else {
typeLogger.Debugf(nil, "Reading SLONG value (at offset).")
value, err = tt.ParseSignedLongs(valueContext.RawExif[valueContext.ValueOffset:], valueContext.UnitCount)
log.PanicIf(err)
}
return value, nil
}
func (tt TagType) ReadSignedRationalValues(valueContext ValueContext) (value []SignedRational, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if tt.ValueIsEmbedded(valueContext.UnitCount) == true {
typeLogger.Debugf(nil, "Reading SRATIONAL value (embedded).")
value, err = tt.ParseSignedRationals(valueContext.RawValueOffset, valueContext.UnitCount)
log.PanicIf(err)
} else {
typeLogger.Debugf(nil, "Reading SRATIONAL value (at offset).")
value, err = tt.ParseSignedRationals(valueContext.RawExif[valueContext.ValueOffset:], valueContext.UnitCount)
log.PanicIf(err)
}
return value, nil
}
// ValueString extracts and parses the given value, and returns a flat string.
// Where the type is not ASCII, `justFirst` indicates whether to just stringify
// the first item in the slice (or return an empty string if the slice is
// empty).
func (tt TagType) ValueString(valueContext ValueContext, justFirst bool) (value string, err error) {
defer func() {
if state := recover(); state != nil {
err = log.Wrap(state.(error))
}
}()
if tt.Type() == TypeByte {
raw, err := tt.ReadByteValues(valueContext)
log.PanicIf(err)
if justFirst == false {
return fmt.Sprintf("%v", raw), nil
} else if valueContext.UnitCount > 0 {
return fmt.Sprintf("%v", raw[0]), nil
} else {
return "", nil
}
} else if tt.Type() == TypeAscii {
raw, err := tt.ReadAsciiValue(valueContext)
log.PanicIf(err)
return fmt.Sprintf("%s", raw), nil
} else if tt.Type() == TypeShort {
raw, err := tt.ReadShortValues(valueContext)
log.PanicIf(err)
if justFirst == false {
return fmt.Sprintf("%v", raw), nil
} else if valueContext.UnitCount > 0 {
return fmt.Sprintf("%v", raw[0]), nil
} else {
return "", nil
}
} else if tt.Type() == TypeLong {
raw, err := tt.ReadLongValues(valueContext)
log.PanicIf(err)
if justFirst == false {
return fmt.Sprintf("%v", raw), nil
} else if valueContext.UnitCount > 0 {
return fmt.Sprintf("%v", raw[0]), nil
} else {
return "", nil
}
} else if tt.Type() == TypeRational {
raw, err := tt.ReadRationalValues(valueContext)
log.PanicIf(err)
parts := make([]string, len(raw))
for i, r := range raw {
parts[i] = fmt.Sprintf("%d/%d", r.Numerator, r.Denominator)
}
if justFirst == false {
return fmt.Sprintf("%v", parts), nil
} else if valueContext.UnitCount > 0 {
return parts[0], nil
} else {
return "", nil
}
} else if tt.Type() == TypeSignedLong {
raw, err := tt.ReadSignedLongValues(valueContext)
log.PanicIf(err)
if justFirst == false {
return fmt.Sprintf("%v", raw), nil
} else if valueContext.UnitCount > 0 {
return fmt.Sprintf("%v", raw[0]), nil
} else {
return "", nil
}
} else if tt.Type() == TypeSignedRational {
raw, err := tt.ReadSignedRationalValues(valueContext)
log.PanicIf(err)
parts := make([]string, len(raw))
for i, r := range raw {
parts[i] = fmt.Sprintf("%d/%d", r.Numerator, r.Denominator)
}
if justFirst == false {
return fmt.Sprintf("%v", raw), nil
} else if valueContext.UnitCount > 0 {
return parts[0], nil
} else {
return "", nil
}
} else {
log.Panicf("value of type (%d) [%s] is unparseable", tt.Type(), tt)
// Never called.
return "", nil
}
}