package exif import ( "bytes" "encoding/binary" "github.com/dsoprea/go-logging" ) const ( // Tag-ID + Tag-Type + Unit-Count + Value/Offset. IfdTagEntrySize = uint32(2 + 2 + 4 + 4) ) type ByteWriter struct { b *bytes.Buffer byteOrder binary.ByteOrder } func NewByteWriter(b *bytes.Buffer, byteOrder binary.ByteOrder) (bw *ByteWriter) { return &ByteWriter{ b: b, byteOrder: byteOrder, } } func (bw ByteWriter) writeAsBytes(value interface{}) (err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() err = binary.Write(bw.b, bw.byteOrder, value) log.PanicIf(err) return nil } func (bw ByteWriter) WriteUint32(value uint32) (err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() err = bw.writeAsBytes(value) log.PanicIf(err) return nil } func (bw ByteWriter) WriteUint16(value uint16) (err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() err = bw.writeAsBytes(value) log.PanicIf(err) return nil } func (bw ByteWriter) WriteFourBytes(value []byte) (err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() len_ := len(value) if len_ != 4 { log.Panicf("value is not four-bytes: (%d)", len_) } _, err = bw.b.Write(value) log.PanicIf(err) return nil } // ifdOffsetIterator keeps track of where the next IFD should be written by // keeping track of where the offsets start, the data that has been added, and // bumping the offset *when* the data is added. type ifdDataAllocator struct { offset uint32 b bytes.Buffer } func newIfdDataAllocator(ifdDataAddressableOffset uint32) *ifdDataAllocator{ return &ifdDataAllocator{ offset: ifdDataAddressableOffset, } } func (ida *ifdDataAllocator) Allocate(value []byte) (offset uint32, err error) { _, err = ida.b.Write(value) log.PanicIf(err) offset = ida.offset ida.offset += uint32(len(value)) return offset, nil } func (ida *ifdDataAllocator) NextOffset() uint32 { return ida.offset } func (ida *ifdDataAllocator) Bytes() []byte { return ida.b.Bytes() } // IfdByteEncoder converts an IB to raw bytes (for writing) while also figuring // out all of the allocations and indirection that is required for extended // data. type IfdByteEncoder struct { } func NewIfdByteEncoder() (ibe *IfdByteEncoder) { return new(IfdByteEncoder) } func (ibe *IfdByteEncoder) TableSize(entryCount int) uint32 { // Tag-Count + (Entry-Size * Entry-Count) + Next-IFD-Offset. return uint32(2) + (IfdTagEntrySize * uint32(entryCount)) + uint32(4) } // encodeTagToBytes encodes the given tag to a byte stream. If // `nextIfdOffsetToWrite` is more than (0), recurse into child IFDs // (`nextIfdOffsetToWrite` is required in order for them to know where the its // IFD data will be written, in order for them to know the offset of where // their allocated-data block will start, which follows right behind). func (ibe *IfdByteEncoder) encodeTagToBytes(ib *IfdBuilder, bt *builderTag, bw *ByteWriter, ida *ifdDataAllocator, nextIfdOffsetToWrite uint32) (childIfdBlock []byte, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() // Write tag-ID. err = bw.WriteUint16(bt.tagId) log.PanicIf(err) // Works for both values and child IFDs (which have an official size of // LONG). err = bw.WriteUint16(bt.typeId) log.PanicIf(err) // Write unit-count. if bt.value.IsBytes() == true { effectiveType := bt.typeId if bt.typeId == TypeUndefined { effectiveType = TypeByte } // It's a non-unknown value.Calculate the count of values of // the type that we're writing and the raw bytes for the whole list. typeSize := uint32(TagTypeSize(effectiveType)) valueBytes := bt.value.Bytes() len_ := len(valueBytes) unitCount := uint32(len_) / typeSize remainder := uint32(len_) % typeSize if remainder > 0 { log.Panicf("tag value of (%d) bytes not evenly divisible by type-size (%d)", len_, typeSize) } err = bw.WriteUint32(unitCount) log.PanicIf(err) // Write four-byte value/offset. if len_ > 4 { offset, err := ida.Allocate(valueBytes) log.PanicIf(err) err = bw.WriteUint32(offset) log.PanicIf(err) } else { fourBytes := make([]byte, 4) copy(fourBytes, valueBytes) err = bw.WriteFourBytes(fourBytes) log.PanicIf(err) } } else { if bt.value.IsIb() == false { log.Panicf("tag value is not a byte-slice but also not a child IB: %v", bt) } // Write unit-count (one LONG representing one offset). err = bw.WriteUint32(1) log.PanicIf(err) if nextIfdOffsetToWrite > 0 { var err error // Create the block of IFD data and everything it requires. childIfdBlock, err = ibe.encodeAndAttachIfd(bt.value.Ib(), nextIfdOffsetToWrite) log.PanicIf(err) // Use the next-IFD offset for it. The IFD will actually get // attached after we return. err = bw.WriteUint32(nextIfdOffsetToWrite) log.PanicIf(err) } else { // No child-IFDs are to be allocated. Finish the entry with a NULL // pointer. err = bw.WriteUint32(0) log.PanicIf(err) } } return childIfdBlock, nil } // encodeIfdToBytes encodes the given IB to a byte-slice. We are given the // offset at which this IFD will be written. This method is used called both to // pre-determine how big the table is going to be (so that we can calculate the // address to allocate data at) as well as to write the final table. // // It is necessary to fully realize the table in order to predetermine its size // because it is not enough to know the size of the table: If there are child // IFDs, we will not be able to allocate them without first knowing how much // data we need to allocate for the current IFD. func (ibe *IfdByteEncoder) encodeIfdToBytes(ib *IfdBuilder, ifdAddressableOffset uint32, nextIfdOffsetToWrite uint32, setNextIb bool) (data []byte, tableSize uint32, dataSize uint32, childIfdSizes []uint32, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() tableSize = ibe.TableSize(len(ib.tags)) b := new(bytes.Buffer) bw := NewByteWriter(b, ib.byteOrder) // Write tag count. err = bw.WriteUint16(uint16(len(ib.tags))) log.PanicIf(err) ida := newIfdDataAllocator(ifdAddressableOffset) childIfdBlocks := make([][]byte, 0) // Write raw bytes for each tag entry. Allocate larger data to be referred // to in the follow-up data-block as required. Any "unknown"-byte tags that // we can't parse will not be present here (using AddTagsFromExisting(), at // least). for _, bt := range ib.tags { childIfdBlock, err := ibe.encodeTagToBytes(ib, &bt, bw, ida, nextIfdOffsetToWrite) log.PanicIf(err) if childIfdBlock != nil { if nextIfdOffsetToWrite == 0 { log.Panicf("no IFD offset provided for child-IFDs; no new child-IFDs permitted") } nextIfdOffsetToWrite += uint32(len(childIfdBlock)) childIfdBlocks = append(childIfdBlocks, childIfdBlock) } } dataBytes := ida.Bytes() dataSize = uint32(len(dataBytes)) childIfdSizes = make([]uint32, len(childIfdBlocks)) childIfdsTotalSize := uint32(0) for i, childIfdBlock := range childIfdBlocks { len_ := uint32(len(childIfdBlock)) childIfdSizes[i] = len_ childIfdsTotalSize += len_ } // N the link from this IFD to the next IFD that will be written in the // next cycle. if setNextIb == true { // Write address of next IFD in chain. This will be the original // allocation offset plus the size of everything we have allocated for // this IFD and its child-IFDs. offset := ifdAddressableOffset + dataSize err := bw.WriteUint32(offset) log.PanicIf(err) } else { err := bw.WriteUint32(0) log.PanicIf(err) } _, err = b.Write(dataBytes) log.PanicIf(err) // Append any child IFD blocks after our table and data blocks. These IFDs // were equipped with the appropriate offset information so it's expected // that all offsets referred to by these will be correct. // // Note that child-IFDs are append after the current IFD and before the // next IFD, as opposed to the root IFDs, which are chained together but // will be interrupted by these child-IFDs (which is expected, per the // standard). for _, childIfdBlock := range childIfdBlocks { _, err = b.Write(childIfdBlock) log.PanicIf(err) } return b.Bytes(), tableSize, dataSize, childIfdSizes, nil } // encodeAndAttachIfd is a reentrant function that processes the IFD chain. func (ibe *IfdByteEncoder) encodeAndAttachIfd(ib *IfdBuilder, ifdAddressableOffset uint32) (data []byte, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() if len(ib.tags) == 0 { log.Panicf("trying to encode an IfdBuilder that doesn't have any tags") } b := new(bytes.Buffer) nextIfdOffsetToWrite := uint32(0) for thisIb := ib; thisIb != nil; thisIb = thisIb.nextIb { // Do a dry-run in order to pre-determine its size requirement. _, tableSize, allocatedDataSize, _, err := ibe.encodeIfdToBytes(ib, ifdAddressableOffset, 0, false) log.PanicIf(err) ifdAddressableOffset += tableSize nextIfdOffsetToWrite = ifdAddressableOffset + allocatedDataSize // Write our IFD as well as any child-IFDs (now that we know the offset // where new IFDs and their data will be allocated). setNextIb := thisIb.nextIb != nil tableAndAllocated, tableSize, allocatedDataSize, childIfdSizes, err := ibe.encodeIfdToBytes(ib, ifdAddressableOffset, nextIfdOffsetToWrite, setNextIb) log.PanicIf(err) totalChildIfdSize := uint32(0) for _, childIfdSize := range childIfdSizes { totalChildIfdSize += childIfdSize } if len(tableAndAllocated) != int(tableSize + allocatedDataSize + totalChildIfdSize) { log.Panicf("IFD table and data is not a consistent size: (%d) != (%d)", len(tableAndAllocated), tableSize + allocatedDataSize + totalChildIfdSize) } _, err = b.Write(tableAndAllocated) log.PanicIf(err) // Advance past what we've allocated, thus far. ifdAddressableOffset = nextIfdOffsetToWrite } return b.Bytes(), nil } // EncodeToExifPayload is the base encoding step that transcribes the entire IB // structure to its on-disk layout. func (ibe *IfdByteEncoder) EncodeToExifPayload(ib *IfdBuilder) (data []byte, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() data, err = ibe.encodeAndAttachIfd(ib, ExifDefaultFirstIfdOffset) log.PanicIf(err) return data, nil } // EncodeToExif calls EncodeToExifPayload and then packages the result into a // complete EXIF block. func (ibe *IfdByteEncoder) EncodeToExif(ib *IfdBuilder) (data []byte, err error) { defer func() { if state := recover(); state != nil { err = log.Wrap(state.(error)) } }() encodedIfds, err := ibe.EncodeToExifPayload(ib) log.PanicIf(err) // Wrap the IFD in a formal EXIF block. b := new(bytes.Buffer) headerBytes, err := BuildExifHeader(EncodeDefaultByteOrder, ExifDefaultFirstIfdOffset) log.PanicIf(err) _, err = b.Write(headerBytes) log.PanicIf(err) _, err = b.Write(encodedIfds) log.PanicIf(err) return b.Bytes(), nil }