bbolt/leaf.go

135 lines
3.5 KiB
Go

package bolt
import (
"bytes"
"sort"
"unsafe"
)
// leaf represents a temporary in-memory leaf page.
// It is deserialized from an memory-mapped page and is not restricted by page size.
type leaf struct {
items leafItems
}
type leafItems []leafItem
type leafItem struct {
key []byte
value []byte
}
// put inserts or replaces a key on a leaf page.
func (l *leaf) put(key []byte, value []byte) {
// Find insertion index.
index := sort.Search(len(l.items), func(i int) bool { return bytes.Compare(l.items[i].key, key) != -1 })
// If there is no existing key then add a new item.
if index == len(l.items) {
l.items = append(l.items, leafItem{})
} else if len(l.items) == 0 || !bytes.Equal(l.items[index].key, key) {
l.items = append(l.items, leafItem{})
copy(l.items[index+1:], l.items[index:])
}
l.items[index].key = key
l.items[index].value = value
}
// read initializes the item data from an on-disk page.
func (l *leaf) read(page *page) {
ncount := int(page.count)
l.items = make(leafItems, ncount)
lnodes := (*[maxNodesPerPage]lnode)(unsafe.Pointer(&page.ptr))
for i := 0; i < ncount; i++ {
lnode := &lnodes[i]
item := &l.items[i]
item.key = lnode.key()
item.value = lnode.value()
}
}
// write writes the items onto one or more leaf pages.
func (l *leaf) write(pageSize int, allocate func(size int) (*page, error)) ([]*page, error) {
var pages []*page
for _, items := range l.split(pageSize) {
// Determine the total page size.
var size int = pageHeaderSize
for _, item := range l.items {
size += lnodeSize + len(item.key) + len(item.value)
}
// Allocate pages.
page, err := allocate(size)
if err != nil {
return nil, err
}
page.flags |= p_leaf
page.count = uint16(len(items))
// Loop over each item and write it to the page.
lnodes := (*[maxNodesPerPage]lnode)(unsafe.Pointer(&page.ptr))
b := (*[maxAllocSize]byte)(unsafe.Pointer(&page.ptr))[lnodeSize*len(items):]
for index, item := range items {
// Write item.
lnode := &lnodes[index]
lnode.pos = uint32(uintptr(unsafe.Pointer(&b[0])) - uintptr(unsafe.Pointer(lnode)))
lnode.ksize = uint32(len(item.key))
lnode.vsize = uint32(len(item.value))
// Write data to the end of the page.
copy(b[0:], item.key)
b = b[len(item.key):]
copy(b[0:], item.value)
b = b[len(item.value):]
}
pages = append(pages, page)
}
return pages, nil
}
// split divides up the noes in the page into appropriately sized groups.
func (l *leaf) split(pageSize int) []leafItems {
// If we don't have enough items for multiple pages then just return the items.
if len(l.items) <= (minKeysPerPage * 2) {
return []leafItems{l.items}
}
// If we're not larger than one page then just return the items.
var totalSize int = pageHeaderSize
for _, item := range l.items {
totalSize += lnodeSize + len(item.key) + len(item.value)
}
if totalSize < pageSize {
return []leafItems{l.items}
}
// Otherwise group into smaller pages and target a given fill size.
var size int
var group leafItems
var groups []leafItems
// Set fill threshold to 25%.
threshold := pageSize >> 4
for index, item := range l.items {
nodeSize := lnodeSize + len(item.key) + len(item.value)
if group == nil || (len(group) >= minKeysPerPage && index < len(l.items)-minKeysPerPage && size+nodeSize > threshold) {
size = pageHeaderSize
if group != nil {
groups = append(groups, group)
}
group = make(leafItems, 0)
}
size += nodeSize
group = append(group, item)
}
groups = append(groups, group)
return groups
}