bbolt/rwtransaction.go

285 lines
6.5 KiB
Go

package bolt
import (
"sort"
"unsafe"
)
// RWTransaction represents a transaction that can read and write data.
// Only one read/write transaction can be active for a DB at a time.
type RWTransaction struct {
Transaction
nodes map[pgid]*node
}
// init initializes the transaction.
func (t *RWTransaction) init(db *DB) {
t.Transaction.init(db)
t.pages = make(map[pgid]*page)
// Copy the meta and increase the transaction id.
t.meta = &meta{}
db.meta().copy(t.meta)
t.meta.txnid += txnid(1)
}
// CreateBucket creates a new bucket.
func (t *RWTransaction) CreateBucket(name string) error {
// Check if bucket already exists.
if b := t.Bucket(name); b != nil {
return &Error{"bucket already exists", nil}
} else if len(name) == 0 {
return &Error{"bucket name cannot be blank", nil}
} else if len(name) > MaxBucketNameSize {
return &Error{"bucket name too long", nil}
}
// Create a blank root leaf page.
p := t.allocate(1)
p.flags = p_leaf
// Add bucket to buckets page.
t.buckets.put(name, &bucket{root: p.id})
return nil
}
// DropBucket deletes a bucket.
func (t *RWTransaction) DeleteBucket(name string) error {
// Remove from buckets page.
t.buckets.del(name)
// TODO: Free all pages.
// TODO: Remove cursor.
return nil
}
func (t *RWTransaction) Put(name string, key []byte, value []byte) error {
b := t.Bucket(name)
if b == nil {
return &Error{"bucket not found", nil}
}
// Validate the key and data size.
if len(key) == 0 {
return &Error{"key required", nil}
} else if len(key) > MaxKeySize {
return &Error{"key too large", nil}
} else if len(value) > MaxDataSize {
return &Error{"data too large", nil}
}
// Move cursor to correct position.
c := b.cursor()
c.Get(key)
// Insert the key/value.
c.node(t).put(key, key, value, 0)
return nil
}
func (t *RWTransaction) Delete(name string, key []byte) error {
b := t.Bucket(name)
if b == nil {
return &Error{"bucket not found", nil}
}
// Move cursor to correct position.
c := b.cursor()
c.Get(key)
// Delete the node if we have a matching key.
c.node(t).del(key)
return nil
}
// Commit writes all changes to disk.
func (t *RWTransaction) Commit() error {
// TODO(benbjohnson): Use vectorized I/O to write out dirty pages.
// TODO: Rebalance.
// Spill data onto dirty pages.
t.spill()
// Spill buckets page.
p := t.allocate((t.buckets.size() / t.db.pageSize) + 1)
t.buckets.write(p)
// Write dirty pages to disk.
if err := t.write(); err != nil {
return err
}
// Update the meta.
t.meta.buckets = p.id
// Write meta to disk.
if err := t.writeMeta(); err != nil {
return err
}
return nil
}
func (t *RWTransaction) Rollback() {
t.close()
}
func (t *RWTransaction) close() {
// Clear nodes.
t.nodes = nil
// TODO: Release writer lock.
}
// allocate returns a contiguous block of memory starting at a given page.
func (t *RWTransaction) allocate(count int) *page {
// TODO(benbjohnson): Use pages from the freelist.
// Allocate a set of contiguous pages from the end of the file.
buf := make([]byte, count*t.db.pageSize)
p := (*page)(unsafe.Pointer(&buf[0]))
p.id = t.meta.pgid
p.overflow = uint32(count - 1)
// Increment the last page id.
t.meta.pgid += pgid(count)
// Save it in our page cache.
t.pages[p.id] = p
return p
}
// spill writes all the nodes to dirty pages.
func (t *RWTransaction) spill() {
// Keep track of the current root nodes.
// We will update this at the end once all nodes are created.
type root struct {
node *node
pgid pgid
}
var roots []root
// Sort nodes by highest depth first.
nodes := make(nodesByDepth, 0, len(t.nodes))
for _, n := range t.nodes {
nodes = append(nodes, n)
}
sort.Sort(nodes)
// Spill nodes by deepest first.
for i := 0; i < len(nodes); i++ {
n := nodes[i]
// Save existing root buckets for later.
if n.parent == nil && n.pgid != 0 {
roots = append(roots, root{n, n.pgid})
}
// Split nodes into appropriate sized nodes.
// The first node in this list will be a reference to n to preserve ancestry.
newNodes := n.split(t.db.pageSize)
// If this is a root node that split then create a parent node.
if n.parent == nil && len(newNodes) > 1 {
n.parent = &node{transaction: t, isLeaf: false}
nodes = append(nodes, n.parent)
}
// Write nodes to dirty pages.
for i, newNode := range newNodes {
// Allocate contiguous space for the node.
p := t.allocate((newNode.size() / t.db.pageSize) + 1)
// Write the node to the page.
newNode.write(p)
newNode.pgid = p.id
newNode.parent = n.parent
// The first node should use the existing entry, other nodes are inserts.
var oldKey []byte
if i == 0 {
oldKey = n.key
} else {
oldKey = newNode.inodes[0].key
}
// Update the parent entry.
if newNode.parent != nil {
newNode.parent.put(oldKey, newNode.inodes[0].key, nil, newNode.pgid)
}
}
}
// Update roots with new roots.
for _, root := range roots {
t.buckets.updateRoot(root.pgid, root.node.root().pgid)
}
// Clear out nodes now that they are all spilled.
t.nodes = make(map[pgid]*node)
}
// write writes any dirty pages to disk.
func (t *RWTransaction) write() error {
// TODO(benbjohnson): If our last page id is greater than the mmap size then lock the DB and resize.
// Sort pages by id.
pages := make(pages, 0, len(t.pages))
for _, p := range t.pages {
pages = append(pages, p)
}
sort.Sort(pages)
// Write pages to disk in order.
for _, p := range pages {
size := (int(p.overflow) + 1) * t.db.pageSize
buf := (*[maxAllocSize]byte)(unsafe.Pointer(p))[:size]
offset := int64(p.id) * int64(t.db.pageSize)
if _, err := t.db.file.WriteAt(buf, offset); err != nil {
return err
}
}
return nil
}
// writeMeta writes the meta to the disk.
func (t *RWTransaction) writeMeta() error {
// Create a temporary buffer for the meta page.
buf := make([]byte, t.db.pageSize)
p := t.db.pageInBuffer(buf, 0)
t.meta.write(p)
// Write the meta page to file.
t.db.metafile.WriteAt(buf, int64(p.id)*int64(t.db.pageSize))
return nil
}
// TODO(benbjohnson): Look up node by page id instead of by stack. Determine depth recursively by parent.
// TODO(benbjohnson): prevSibling()
// TODO(benbjohnson): nextSibling()
// node creates a node from a page and associates it with a given parent.
func (t *RWTransaction) node(pgid pgid, parent *node) *node {
// Retrieve node if it has already been fetched.
if n := t.nodes[pgid]; n != nil {
return n
}
// Otherwise create a branch and cache it.
n := &node{transaction: t, parent: parent}
if n.parent != nil {
n.depth = n.parent.depth + 1
}
n.read(t.page(pgid))
t.nodes[pgid] = n
return n
}