package bolt import ( "bytes" "sort" ) type Cursor struct { transaction *Transaction root pgid stack []pageElementRef } // First moves the cursor to the first item in the bucket and returns its key and data. func (c *Cursor) First() ([]byte, []byte) { // TODO: Traverse to the first key. return nil, nil } // Move the cursor to the next key/value. func (c *Cursor) Next() ([]byte, []byte) { return nil, nil } // Get positions the cursor at a specific key and returns the its value. func (c *Cursor) Get(key []byte) []byte { // Start from root page and traverse to correct page. c.stack = c.stack[:0] c.search(key, c.transaction.page(c.root)) p, index := c.top() // If the cursor is pointing to the end of page then return nil. if index == p.count { return nil } // If our target node isn't the same key as what's passed in then return nil. if !bytes.Equal(key, c.element().key()) { return nil } return c.element().value() } func (c *Cursor) search(key []byte, p *page) { if (p.flags & (p_branch | p_leaf)) == 0 { panic("invalid page type: " + p.typ()) } e := pageElementRef{page: p} c.stack = append(c.stack, e) // If we're on a leaf page then find the specific node. if (p.flags & p_leaf) != 0 { c.nsearch(key, p) return } // Binary search for the correct range. inodes := p.branchPageElements() var exact bool index := sort.Search(int(p.count), func(i int) bool { // TODO(benbjohnson): Optimize this range search. It's a bit hacky right now. // sort.Search() finds the lowest index where f() != -1 but we need the highest index. ret := bytes.Compare(inodes[i].key(), key) if ret == 0 { exact = true } return ret != -1 }) if !exact && index > 0 { index-- } c.stack[len(c.stack)-1].index = uint16(index) // Recursively search to the next page. c.search(key, c.transaction.page(inodes[index].pgid)) } // nsearch searches a leaf node for the index of the node that matches key. func (c *Cursor) nsearch(key []byte, p *page) { e := &c.stack[len(c.stack)-1] // Binary search for the correct leaf node index. inodes := p.leafPageElements() index := sort.Search(int(p.count), func(i int) bool { return bytes.Compare(inodes[i].key(), key) != -1 }) e.index = uint16(index) } // top returns the page and leaf node that the cursor is currently pointing at. func (c *Cursor) top() (*page, uint16) { ptr := c.stack[len(c.stack)-1] return ptr.page, ptr.index } // page returns the page that the cursor is currently pointing at. func (c *Cursor) page() *page { return c.stack[len(c.stack)-1].page } // element returns the leaf element that the cursor is currently positioned on. func (c *Cursor) element() *leafPageElement { ref := c.stack[len(c.stack)-1] return ref.page.leafPageElement(ref.index) } // node returns the node that the cursor is currently positioned on. func (c *Cursor) node(t *RWTransaction) *node { if len(c.stack) == 0 { return nil } // Start from root and traverse down the hierarchy. n := t.node(c.stack[0].page.id, nil) for _, ref := range c.stack[:len(c.stack)-1] { __assert__(!n.isLeaf, "expected branch node") __assert__(ref.page.id == n.pgid, "node/page mismatch a: %d != %d", ref.page.id, n.childAt(ref.index).pgid) n = n.childAt(ref.index) } __assert__(n.isLeaf, "expected leaf node") __assert__(n.pgid == c.stack[len(c.stack)-1].page.id, "node/page mismatch b: %d != %d", n.pgid, c.stack[len(c.stack)-1].page.id) return n }