Allow reads of unflushed nodes.

This commit allows cursors to read updated values from within the
RWTransaction.
pull/34/head
Ben Johnson 2014-03-01 09:13:59 -07:00
parent 1eb9e09028
commit a1f43f4d60
7 changed files with 172 additions and 62 deletions

View File

@ -35,7 +35,7 @@ func (b *Bucket) Cursor() *Cursor {
return &Cursor{
transaction: b.transaction,
root: b.root,
stack: make([]pageElementRef, 0),
stack: make([]elemRef, 0),
}
}

View File

@ -23,6 +23,20 @@ func TestBucketGetNonExistent(t *testing.T) {
})
}
// Ensure that a bucket can read a value that is not flushed yet.
func TestBucketGetFromNode(t *testing.T) {
withOpenDB(func(db *DB, path string) {
db.CreateBucket("widgets")
db.Do(func(txn *RWTransaction) error {
b := txn.Bucket("widgets")
b.Put([]byte("foo"), []byte("bar"))
value := b.Get([]byte("foo"))
assert.Equal(t, value, []byte("bar"))
return nil
})
})
}
// Ensure that a bucket can write a key/value.
func TestBucketPut(t *testing.T) {
withOpenDB(func(db *DB, path string) {

185
cursor.go
View File

@ -10,15 +10,15 @@ import (
type Cursor struct {
transaction *Transaction
root pgid
stack []pageElementRef
stack []elemRef
}
// First moves the cursor to the first item in the bucket and returns its key and value.
// If the bucket is empty then a nil key and value are returned.
func (c *Cursor) First() (key []byte, value []byte) {
c.stack = c.stack[:0]
p := c.transaction.page(c.root)
c.stack = append(c.stack, pageElementRef{page: p, index: 0})
p, n := c.transaction.pageNode(c.root)
c.stack = append(c.stack, elemRef{page: p, node: n, index: 0})
c.first()
return c.keyValue()
}
@ -27,8 +27,10 @@ func (c *Cursor) First() (key []byte, value []byte) {
// If the bucket is empty then a nil key and value are returned.
func (c *Cursor) Last() (key []byte, value []byte) {
c.stack = c.stack[:0]
p := c.transaction.page(c.root)
c.stack = append(c.stack, pageElementRef{page: p, index: p.count - 1})
p, n := c.transaction.pageNode(c.root)
ref := elemRef{page: p, node: n}
ref.index = ref.count() - 1
c.stack = append(c.stack, ref)
c.last()
return c.keyValue()
}
@ -40,7 +42,7 @@ func (c *Cursor) Next() (key []byte, value []byte) {
// Move up the stack as we hit the end of each page in our stack.
for i := len(c.stack) - 1; i >= 0; i-- {
elem := &c.stack[i]
if elem.index < elem.page.count-1 {
if elem.index < elem.count()-1 {
elem.index++
break
}
@ -85,61 +87,107 @@ func (c *Cursor) Prev() (key []byte, value []byte) {
// If the key does not exist then the next key is used. If no keys
// follow, a nil value is returned.
func (c *Cursor) Seek(seek []byte) (key []byte, value []byte) {
// Start from root page and traverse to correct page.
// Start from root page/node and traverse to correct page.
c.stack = c.stack[:0]
c.search(seek, c.transaction.page(c.root))
p, index := c.top()
c.search(seek, c.root)
ref := &c.stack[len(c.stack)-1]
// If the cursor is pointing to the end of page then return nil.
if index == p.count {
// If the cursor is pointing to the end of page/node then return nil.
if ref.index >= ref.count() {
return nil, nil
}
return c.element().key(), c.element().value()
return c.keyValue()
}
// first moves the cursor to the first leaf element under the last page in the stack.
func (c *Cursor) first() {
p := c.stack[len(c.stack)-1].page
for {
// Exit when we hit a leaf page.
if (p.flags & leafPageFlag) != 0 {
ref := &c.stack[len(c.stack)-1]
if ref.isLeaf() {
break
}
// Keep adding pages pointing to the first element to the stack.
p = c.transaction.page(p.branchPageElement(c.stack[len(c.stack)-1].index).pgid)
c.stack = append(c.stack, pageElementRef{page: p, index: 0})
var pgid pgid
if ref.node != nil {
pgid = ref.node.inodes[ref.index].pgid
} else {
pgid = ref.page.branchPageElement(uint16(ref.index)).pgid
}
p, n := c.transaction.pageNode(pgid)
c.stack = append(c.stack, elemRef{page: p, node: n, index: 0})
}
}
// last moves the cursor to the last leaf element under the last page in the stack.
func (c *Cursor) last() {
p := c.stack[len(c.stack)-1].page
for {
// Exit when we hit a leaf page.
if (p.flags & leafPageFlag) != 0 {
ref := &c.stack[len(c.stack)-1]
if ref.isLeaf() {
break
}
// Keep adding pages pointing to the last element in the stack.
p = c.transaction.page(p.branchPageElement(c.stack[len(c.stack)-1].index).pgid)
c.stack = append(c.stack, pageElementRef{page: p, index: p.count - 1})
var pgid pgid
if ref.node != nil {
pgid = ref.node.inodes[ref.index].pgid
} else {
pgid = ref.page.branchPageElement(uint16(ref.index)).pgid
}
p, n := c.transaction.pageNode(pgid)
var nextRef = elemRef{page: p, node: n}
nextRef.index = nextRef.count() - 1
c.stack = append(c.stack, nextRef)
}
}
// search recursively performs a binary search against a given page until it finds a given key.
func (c *Cursor) search(key []byte, p *page) {
_assert((p.flags&(branchPageFlag|leafPageFlag)) != 0, "invalid page type: "+p.typ())
e := pageElementRef{page: p}
// search recursively performs a binary search against a given page/node until it finds a given key.
func (c *Cursor) search(key []byte, pgid pgid) {
p, n := c.transaction.pageNode(pgid)
if p != nil {
_assert((p.flags&(branchPageFlag|leafPageFlag)) != 0, "invalid page type: "+p.typ())
}
e := elemRef{page: p, node: n}
c.stack = append(c.stack, e)
// If we're on a leaf page then find the specific node.
if (p.flags & leafPageFlag) != 0 {
c.nsearch(key, p)
// If we're on a leaf page/node then find the specific node.
if e.isLeaf() {
c.nsearch(key)
return
}
if n != nil {
c.searchNode(key, n)
return
}
c.searchPage(key, p)
}
func (c *Cursor) searchNode(key []byte, n *node) {
var exact bool
index := sort.Search(len(n.inodes), func(i int) bool {
// TODO(benbjohnson): Optimize this range search. It's a bit hacky right now.
// sort.Search() finds the lowest index where f() != -1 but we need the highest index.
ret := bytes.Compare(n.inodes[i].key, key)
if ret == 0 {
exact = true
}
return ret != -1
})
if !exact && index > 0 {
index--
}
c.stack[len(c.stack)-1].index = index
// Recursively search to the next page.
c.search(key, n.inodes[index].pgid)
}
func (c *Cursor) searchPage(key []byte, p *page) {
// Binary search for the correct range.
inodes := p.branchPageElements()
@ -156,58 +204,93 @@ func (c *Cursor) search(key []byte, p *page) {
if !exact && index > 0 {
index--
}
c.stack[len(c.stack)-1].index = uint16(index)
c.stack[len(c.stack)-1].index = index
// Recursively search to the next page.
c.search(key, c.transaction.page(inodes[index].pgid))
c.search(key, inodes[index].pgid)
}
// nsearch searches a leaf node for the index of the node that matches key.
func (c *Cursor) nsearch(key []byte, p *page) {
// nsearch searches the leaf node on the top of the stack for a key.
func (c *Cursor) nsearch(key []byte) {
e := &c.stack[len(c.stack)-1]
p, n := e.page, e.node
// Binary search for the correct leaf node index.
// If we have a node then search its inodes.
if n != nil {
index := sort.Search(len(n.inodes), func(i int) bool {
return bytes.Compare(n.inodes[i].key, key) != -1
})
e.index = index
return
}
// If we have a page then search its leaf elements.
inodes := p.leafPageElements()
index := sort.Search(int(p.count), func(i int) bool {
return bytes.Compare(inodes[i].key(), key) != -1
})
e.index = uint16(index)
}
// top returns the page and leaf node that the cursor is currently pointing at.
func (c *Cursor) top() (*page, uint16) {
ptr := c.stack[len(c.stack)-1]
return ptr.page, ptr.index
}
// element returns the leaf element that the cursor is currently positioned on.
func (c *Cursor) element() *leafPageElement {
ref := c.stack[len(c.stack)-1]
return ref.page.leafPageElement(ref.index)
e.index = index
}
// keyValue returns the key and value of the current leaf element.
func (c *Cursor) keyValue() ([]byte, []byte) {
ref := &c.stack[len(c.stack)-1]
if ref.index >= ref.page.count {
if ref.index >= ref.count() {
return nil, nil
}
e := ref.page.leafPageElement(ref.index)
return e.key(), e.value()
// Retrieve value from node.
if ref.node != nil {
inode := &ref.node.inodes[ref.index]
return inode.key, inode.value
}
// Or retrieve value from page.
elem := ref.page.leafPageElement(uint16(ref.index))
return elem.key(), elem.value()
}
// node returns the node that the cursor is currently positioned on.
func (c *Cursor) node(t *RWTransaction) *node {
_assert(len(c.stack) > 0, "accessing a node with a zero-length cursor stack")
// If the top of the stack is a leaf node then just return it.
if ref := &c.stack[len(c.stack)-1]; ref.node != nil && ref.isLeaf() {
return ref.node
}
// Start from root and traverse down the hierarchy.
n := t.node(c.stack[0].page.id, nil)
var n = c.stack[0].node
if n == nil {
n = t.node(c.stack[0].page.id, nil)
}
for _, ref := range c.stack[:len(c.stack)-1] {
_assert(!n.isLeaf, "expected branch node")
_assert(ref.page.id == n.pgid, "node/page mismatch a: %d != %d", ref.page.id, n.childAt(int(ref.index)).pgid)
n = n.childAt(int(ref.index))
}
_assert(n.isLeaf, "expected leaf node")
_assert(n.pgid == c.stack[len(c.stack)-1].page.id, "node/page mismatch b: %d != %d", n.pgid, c.stack[len(c.stack)-1].page.id)
return n
}
// elemRef represents a reference to an element on a given page/node.
type elemRef struct {
page *page
node *node
index int
}
// isLeaf returns whether the ref is pointing at a leaf page/node.
func (r *elemRef) isLeaf() bool {
if r.node != nil {
return r.node.isLeaf
}
return (r.page.flags & leafPageFlag) != 0
}
// count returns the number of inodes or page elements.
func (r *elemRef) count() int {
if r.node != nil {
return len(r.node.inodes)
}
return int(r.page.count)
}

5
db.go
View File

@ -304,7 +304,7 @@ func (db *DB) RWTransaction() (*RWTransaction, error) {
}
// Create a transaction associated with the database.
t := &RWTransaction{nodes: make(map[pgid]*node)}
t := &RWTransaction{}
t.init(db)
db.rwtransaction = t
@ -571,7 +571,8 @@ func (db *DB) Stat() (*Stat, error) {
// page retrieves a page reference from the mmap based on the current page size.
func (db *DB) page(id pgid) *page {
return (*page)(unsafe.Pointer(&db.data[id*pgid(db.pageSize)]))
pos := id*pgid(db.pageSize)
return (*page)(unsafe.Pointer(&db.data[pos]))
}
// pageInBuffer retrieves a page reference from a given byte array based on the current page size.

View File

@ -33,12 +33,6 @@ type page struct {
ptr uintptr
}
// pageElementRef represents a reference to an element on a given page.
type pageElementRef struct {
page *page
index uint16
}
// typ returns a human readable page type string used for debugging.
func (p *page) typ() string {
if (p.flags & branchPageFlag) != 0 {

View File

@ -11,7 +11,6 @@ import (
// functions provided by Transaction.
type RWTransaction struct {
Transaction
nodes map[pgid]*node
pending []*node
}
@ -20,6 +19,7 @@ func (t *RWTransaction) init(db *DB) {
t.Transaction.init(db)
t.Transaction.rwtransaction = t
t.pages = make(map[pgid]*page)
t.nodes = make(map[pgid]*node)
// Increment the transaction id.
t.meta.txnid += txnid(1)
@ -266,7 +266,7 @@ func (t *RWTransaction) writeMeta() error {
// node creates a node from a page and associates it with a given parent.
func (t *RWTransaction) node(pgid pgid, parent *node) *node {
// Retrieve node if it has already been fetched.
if n := t.nodes[pgid]; n != nil {
if n := t.Transaction.node(pgid); n != nil {
return n
}

View File

@ -12,6 +12,7 @@ type Transaction struct {
rwtransaction *RWTransaction
meta *meta
buckets *buckets
nodes map[pgid]*node
pages map[pgid]*page
}
@ -95,6 +96,23 @@ func (t *Transaction) page(id pgid) *page {
return t.db.page(id)
}
// node returns a reference to the in-memory node for a given page, if it exists.
func (t *Transaction) node(id pgid) *node {
if t.nodes == nil {
return nil
}
return t.nodes[id]
}
// pageNode returns the in-memory node, if it exists.
// Otherwise returns the underlying page.
func (t *Transaction) pageNode(id pgid) (*page, *node) {
if n := t.node(id); n != nil {
return nil, n
}
return t.page(id), nil
}
// forEachPage iterates over every page within a given page and executes a function.
func (t *Transaction) forEachPage(pgid pgid, depth int, fn func(*page, int)) {
p := t.page(pgid)